Prognose von Umsatz und Bruttowertschöpfung des verarbeitenden Gewerbes in Sachsen für das Jahr 2004 (Prognose der Bruttowertschöpfung des sächsischen verarbeitenden Gewerbes 2004)
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Franck Sédillot & Nigel Pain, 2003. "Indicator Models of Real GDP Growth in Selected OECD Countries," OECD Economics Department Working Papers 364, OECD Publishing.
- Stark, Tom & Croushore, Dean, 2002.
"Forecasting with a real-time data set for macroeconomists,"
Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
- Tom Stark and Dean Croushore, 2001. "Forecasting with a Real-Time Data Set for Macroeconomists," Computing in Economics and Finance 2001 258, Society for Computational Economics.
- Dean Croushore & Tom Stark, 2001. "Forecasting with a real-time data set for macroeconomists," Working Papers 01-10, Federal Reserve Bank of Philadelphia.
- Moneta, Fabio, 2003. "Does the yield spread predict recessions in the euro area?," Working Paper Series 294, European Central Bank.
- Brautzsch, Hans-Ulrich & Ludwig, Udo, 2002. "Vierteljährliche Entstehungsrechnung des Bruttoinlandsprodukts für Ostdeutschland: Sektorale Bruttowertschöpfung," IWH Discussion Papers 164/2002, Halle Institute for Economic Research (IWH).
- Reinhard Hild, 2004. "Produktion, Wertschöpfung und Beschäftigung im Verarbeitenden Gewerbe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 57(07), pages 19-27, April.
- Croushore, Dean & Stark, Tom, 2001.
"A real-time data set for macroeconomists,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
- Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.
- Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
- Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
- Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
- Stan Hurn & Jing Tian & Lina Xu, 2021. "Assessing the Informational Content of Official Australian Bureau of Meteorology Forecasts of Wind Speed," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 525-547, December.
- Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021.
"Predicting benchmarked US state employment data in real time,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
- Scott Brave & Charles S. Gascon & William Kluender & Thomas Walstrum, 2019. "Predicting Benchmarked US State Employment Data in Realtime," Working Paper Series WP 2019-11, Federal Reserve Bank of Chicago.
- Scott A. Brave & Charles S. Gascon & William Kluender & Thomas Walstrum, 2019. "Predicting Benchmarked US State Employment Data in Real Time," Working Papers 2019-037, Federal Reserve Bank of St. Louis, revised 11 Mar 2021.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Aastveit, Knut Are & Trovik, Tørres, 2014.
"Estimating the output gap in real time: A factor model approach,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
- Knut Are Aastveit & Tørres G. Trovik, 2008. "Estimating the output gap in real time: A factor model approach," Working Paper 2008/23, Norges Bank.
- Pär Stockhammar & Pär Österholm, 2018.
"Do inflation expectations granger cause inflation?,"
Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(2), pages 403-431, August.
- Stockhammar, Pär & Österholm, Pär, 2016. "Do Inflation Expectations Granger Cause Inflation?," Working Papers 2016:4, Örebro University, School of Business.
- Stockhammar, Pär & Österholm, Pär, 2016. "Do Inflation Expectations Granger Cause Inflation?," Working Papers 145, National Institute of Economic Research.
- Corradi, Valentina & Swanson, Norman R., 2004.
"Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives,"
International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
- Valentina Corradi & Norman Swanson, 2003. "Some Recent Developments in Predictive Accuracy Testing With Nested Models and (Generic) Nonlinear Alternatives," Departmental Working Papers 200316, Rutgers University, Department of Economics.
- David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
- Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010.
"Combining forecast densities from VARs with uncertain instabilities,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
- Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
- Anne-Sofie Jore & James Mitchell & Shaun P. Vahey, 2008. "Combining forecast densities from VARs with uncertain instabilities," Working Paper 2008/01, Norges Bank.
- Bec, Frédérique & Kanda, Patrick, 2020. "Is inflation driven by survey-based, VAR-based or myopic expectations? An empirical assessment from US real-time data," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014.
"Nowcasting GDP in Real Time: A Density Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in Real-Time: A Density Combination Approach," Working Papers No 1/2011, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
- Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019.
"Residential investment and recession predictability,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
- Knut Are Aastveit & André K. Anundsen & Eyo I. Herstad, 2017. "Residential investment and recession predictability," Working Paper 2017/24, Norges Bank.
- Knut Are Aastveit & Andr K. Anundsen & Eyo I. Herstad, 2017. "Residential investment and recession predictability," Working Papers No 8/2017, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Marcelle Chauvet & Jeremy Piger, 2013.
"Employment And The Business Cycle,"
Manchester School, University of Manchester, vol. 81, pages 16-42, October.
- Marcelle, Chauvet & Jeremy, Piger, 2010. "Employment and the business cycle," MPRA Paper 34103, University Library of Munich, Germany.
- Marcelle, Chauvet & Jeremy, Piger, 2010. "Employment and the business cycle," MPRA Paper 46642, University Library of Munich, Germany.
- Clements Michael P., 2012. "Forecasting U.S. Output Growth with Non-Linear Models in the Presence of Data Uncertainty," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-27, January.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Sharon Kozicki, 2001. "Implications of real-time data for forecasting and modeling expectations," Research Working Paper RWP 01-12, Federal Reserve Bank of Kansas City.
More about this item
Keywords
; ; ; ; ;JEL classification:
- D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
- L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifodre:v:11:y:2004:i:04:p:23-30. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/ces/ifodre/v11y2004i04p23-30.html