IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v26y2007i2p77-94.html
   My bibliography  Save this article

The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries

Author

Listed:
  • Giuseppe Parigi

    (Bank of Italy, Research Department, Rome, Italy)

  • Roberto Golinelli

    (Department of Economics, University of Bologna, Bologna, Italy)

Abstract

The delayed release of the National Account data for GDP is an impediment to the early understanding of the economic situation. In the short run, this information gap may be at least partially eliminated by bridge models (BM) which exploit the information content of timely updated monthly indicators. In this paper we examine the forecasting ability of BM for GDP growth in the G7 countries and compare their performance to that of univariate and multivariate statistical benchmark models. We run four alternative one-quarter-ahead forecasting experiments to assess BM performance in situations as close as possible to the actual forecasting activity. BM are estimated for GDP both for single countries (USA, Japan, Germany, France, UK, Italy and Canada), and area-wide (G7, European Union, and Euro area). BM forecasting ability is always superior to that of benchmark models, provided that at least some monthly indicator data are available over the forecasting horizon. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
  • Handle: RePEc:jof:jforec:v:26:y:2007:i:2:p:77-94
    DOI: 10.1002/for.1007
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1007
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
    3. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    4. Roberto Golinelli & Giuseppe Parigi, 2004. "Consumer Sentiment and Economic Activity: A Cross Country Comparison," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(2), pages 147-170.
    5. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    6. Krolzig, Hans-Martin & Hendry, David F., 2001. "Computer automation of general-to-specific model selection procedures," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
    7. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    8. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    9. Victor Zarnowitz, 1992. "Macroeconomics and Business Cycles: An Overview," NBER Chapters,in: Business Cycles: Theory, History, Indicators, and Forecasting, pages 1-19 National Bureau of Economic Research, Inc.
    10. Robert Ingenito & Bharat Trehan, 1996. "Using monthly data to predict quarterly output," Economic Review, Federal Reserve Bank of San Francisco, pages 3-11.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    13. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    14. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    15. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 38(2), pages 112-134.
    16. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    17. Giuseppe Parigi & Paolo Carnazza, 2003. "Tentative business confidence indicators for the Italian economy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 587-602.
    18. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    19. Victor Zarnowitz, 1992. "Business Cycles and Growth," NBER Chapters,in: Business Cycles: Theory, History, Indicators, and Forecasting, pages 203-231 National Bureau of Economic Research, Inc.
    20. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    21. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    22. Golinelli, Roberto & Parigi, Giuseppe, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    23. Wickens, Michael R., 1996. "Interpreting cointegrating vectors and common stochastic trends," Journal of Econometrics, Elsevier, vol. 74(2), pages 255-271, October.
    24. Perez-Amaral, Teodosio & Gallo, Giampiero M. & White, Halbert, 2005. "A COMPARISON OF COMPLEMENTARY AUTOMATIC MODELING METHODS: RETINA AND PcGets," Econometric Theory, Cambridge University Press, vol. 21(01), pages 262-277, February.
    25. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 276, European Central Bank.
    26. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    27. Zarnowitz, Victor, 1992. "Business Cycles," National Bureau of Economic Research Books, University of Chicago Press, number 9780226978901, December.
    28. Victor Zarnowitz, 1992. "The Regularity of Business Cycles," NBER Chapters,in: Business Cycles: Theory, History, Indicators, and Forecasting, pages 232-264 National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:26:y:2007:i:2:p:77-94. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.