IDEAS home Printed from https://ideas.repec.org/a/fip/fedfer/y1989iwinp39-52.html
   My bibliography  Save this article

Forecasting growth in current quarter real GNP

Author

Listed:
  • Bharat Trehan

Abstract

No abstract is available for this item.

Suggested Citation

  • Bharat Trehan, 1989. "Forecasting growth in current quarter real GNP," Economic Review, Federal Reserve Bank of San Francisco, issue Win, pages 39-52.
  • Handle: RePEc:fip:fedfer:y:1989:i:win:p:39-52
    as

    Download full text from publisher

    File URL: https://www.frbsf.org/wp-content/uploads/89-1_39-52.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    2. Steven Braun, 1987. "Estimation of current-quarter GNP by pooling preliminary labor - market data," Working Paper Series / Economic Activity Section 75, Board of Governors of the Federal Reserve System (U.S.).
    3. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 8(Fall).
    4. Robert B. Litterman, 1984. "Above-average national growth in 1985 and 1986," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 8(Fall).
    5. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    6. Stephen K. McNees, 1986. "The accuracy of two forecasting techniques: some evidence and an interpretation," New England Economic Review, Federal Reserve Bank of Boston, issue Mar, pages 20-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    2. Balke, Nathan S & Petersen, D'Ann, 2002. "How Well Does the Beige Book Reflect Economic Activity? Evaluating Qualitative Information Quantitatively," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 114-136, February.
    3. Starck, Christian, 1991. "Specifying a Bayesian vector autoregression for short-run macroeconomic forecasting with an application to Finland," Research Discussion Papers 4/1991, Bank of Finland.
    4. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    5. Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016. "A multi-country approach to forecasting output growth using PMIs," Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
    6. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    7. Tom Stark, 2000. "Does current-quarter information improve quarterly forecasts for the U.S. economy?," Working Papers 00-2, Federal Reserve Bank of Philadelphia.
    8. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
    9. Bharat Trehan, 1992. "Predicting contemporaneous output," Economic Review, Federal Reserve Bank of San Francisco, pages 3-11.
    10. Martin Feldkircher & Florian Huber & Josef Schreiner & Marcel Tirpák & Peter Tóth & Julia Wörz, 2015. "Bridging the information gap: small-scale nowcasting models of GDP growth for selected CESEE countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 2, pages 56-75.
    11. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    12. repec:zbw:bofrdp:1991_004 is not listed on IDEAS
    13. Barnett, William A. & Chauvet, Marcelle & Leiva-Leon, Danilo, 2016. "Real-time nowcasting of nominal GDP with structural breaks," Journal of Econometrics, Elsevier, vol. 191(2), pages 312-324.
    14. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    15. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    16. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rangan Gupta & Stephen Miller, 2012. "“Ripple effects” and forecasting home prices in Los Angeles, Las Vegas, and Phoenix," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 763-782, June.
    2. Francisco F. R. Ramos, 1996. "Forecasting market shares using VAR and BVAR models: A comparison of their forecasting performance," Econometrics 9601003, University Library of Munich, Germany.
    3. Don H. Kim, 2008. "Challenges in macro-finance modeling," Finance and Economics Discussion Series 2008-06, Board of Governors of the Federal Reserve System (U.S.).
    4. Ford, Stephen A., 1986. "A Beginner'S Guide To Vector Autoregression," Staff Papers 13527, University of Minnesota, Department of Applied Economics.
    5. Robert Ingenito & Bharat Trehan, 1996. "Using monthly data to predict quarterly output," Economic Review, Federal Reserve Bank of San Francisco, pages 3-11.
    6. Pami Dua & Anirvan Banerji & Stephen M. Miller, 2006. "Performance evaluation of the New Connecticut Leading Employment Index using lead profiles and BVAR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 415-437.
    7. Pami Dua & Stephen M. Miller & David J. Smyth, 1996. "Using Leading Indicators to Forecast US Home Sales in a Bayesian VAR Framework," Working papers 1996-08, University of Connecticut, Department of Economics.
    8. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    9. Peter C.B. Phillips, 1992. "Bayes Methods for Trending Multiple Time Series with an Empirical Application to the US Economy," Cowles Foundation Discussion Papers 1025, Cowles Foundation for Research in Economics, Yale University.
    10. Tom Stark, 1998. "A Bayesian vector error corrections model of the U.S. economy," Working Papers 98-12, Federal Reserve Bank of Philadelphia.
    11. Ghent, Andra, 2006. "Comparing Models of Macroeconomic Fluctuations: How Big Are the Differences?," MPRA Paper 180, University Library of Munich, Germany.
    12. Pami Dua & Stephen Miller, 1995. "Forecasting and Analyzing Economic Activity with Coincident and Leading Indexes: The Case of Connecticut," Working papers 1995-05, University of Connecticut, Department of Economics.
    13. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    14. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    15. Kenny, Geoff & Meyler, Aidan & Quinn, Terry, 1998. "Bayesian VAR Models for Forecasting Irish Inflation," Research Technical Papers 4/RT/98, Central Bank of Ireland.
    16. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working Papers 200912, University of Pretoria, Department of Economics.
    17. Bekiros, Stelios & Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2016. "Dealing with financial instability under a DSGE modeling approach with banking intermediation: A predictability analysis versus TVP-VARs," Journal of Financial Stability, Elsevier, vol. 26(C), pages 216-227.
    18. Robert Litterman, 1987. "The Limits of Counter-Cyclical Monetary Policy: an Analysis Based on Optimal Control Theory and Vector Autoregressions," Annals of Economics and Statistics, GENES, issue 6-7, pages 125-160.
    19. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
    20. Chai, Jian & Guo, Ju-E. & Meng, Lei & Wang, Shou-Yang, 2011. "Exploring the core factors and its dynamic effects on oil price: An application on path analysis and BVAR-TVP model," Energy Policy, Elsevier, vol. 39(12), pages 8022-8036.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedfer:y:1989:i:win:p:39-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Federal Reserve Bank of San Francisco Research Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbsfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.