IDEAS home Printed from https://ideas.repec.org/p/ucn/wpaper/201611.html
   My bibliography  Save this paper

Dealing with Financial Instability under a DSGE modeling approach with Banking Intermediation: a predictability analysis versus TVP-VARs

Author

Listed:
  • Stelios D. Bekiros
  • Roberta Cardani
  • Alessia Paccagnini
  • Stefania Villa

Abstract

In the dynamic stochastic general equilibrium (DSGE) literature there has been an increasing awareness on the role that the banking sector can play in macroeconomic activity. We present a DSGE model with financial intermediation as in Gertler and Karadi (2011). The estimation of shocks and of the structural parameters shows that time-variation should be crucial in any attempted empirical analysis. Since DSGE modelling usually fails to take into account inherent nonlinearities of the economy, we propose a novel time-varying parameter (TVP) state-space estimation method for VAR processes both for homoskedastic and heteroskedastic error structures. We conduct an exhaustive empirical exercise to compare the out-of-sample predictive performance of the estimated DSGE model with that of standard ARs, VARs, Bayesian VARs and TVP-VARs. We find that the TVP-VAR provides the best forecasting performance for the series of GDP and net worth of financial intermediaries for all steps-ahead, while the DSGE model outperforms the other specifications in forecasting inflation and the federal funds rate at shorter horizons.

Suggested Citation

  • Stelios D. Bekiros & Roberta Cardani & Alessia Paccagnini & Stefania Villa, 2016. "Dealing with Financial Instability under a DSGE modeling approach with Banking Intermediation: a predictability analysis versus TVP-VARs," Working Papers 201611, School of Economics, University College Dublin.
  • Handle: RePEc:ucn:wpaper:201611
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10197/7864
    File Function: First version, 2016
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall.
    2. A. C. Harvey, 1986. "Analysis and Generalisation of a Multivariate Exponential Smoothing Model," Management Science, INFORMS, vol. 32(3), pages 374-380, March.
    3. Villa, Stefania, 2016. "Financial Frictions In The Euro Area And The United States: A Bayesian Assessment," Macroeconomic Dynamics, Cambridge University Press, vol. 20(05), pages 1313-1340, July.
    4. Matteo Iacoviello, 2005. "House Prices, Borrowing Constraints, and Monetary Policy in the Business Cycle," American Economic Review, American Economic Association, vol. 95(3), pages 739-764, June.
    5. Rangan Gupta & Alain Kabundi, 2010. "Forecasting macroeconomic variables in a small open economy: a comparison between small- and large-scale models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 168-185.
    6. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.
    7. Marcellino, Massimliano, 2004. "Forecasting EMU macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
    8. Giovanni Melina & Stefania Villa, 2014. "Fiscal Policy And Lending Relationships," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 696-712, April.
    9. Ralf Brüggemann & Helmut Lütkepohl & Massimiliano Marcellino, 2008. "Forecasting euro area variables with German pre-EMU data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 465-481.
    10. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    11. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    12. Wolters, Maik H., 2011. "Forecasting under Model Uncertainty," Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48723, Verein für Socialpolitik / German Economic Association.
    13. Guangling 'Dave' Liu & Rangan Gupta & Eric Schaling, 2009. "A New-Keynesian DSGE model for forecasting the South African economy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 387-404.
    14. Clark, Peter K., 1989. "Trend reversion in real output and unemployment," Journal of Econometrics, Elsevier, vol. 40(1), pages 15-32, January.
    15. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393 Elsevier.
    16. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    17. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    18. Eo, Yunjong, 2008. "Bayesian Analysis of DSGE Models with Regime Switching," MPRA Paper 13910, University Library of Munich, Germany, revised 11 Feb 2009.
    19. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    20. Kim, Chang-Jin, 1993. "Unobserved-Component Time Series Models with Markov-Switching Heteroscedasticity: Changes in Regime and the Link between Inflation Rates and Inflation Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 341-349, July.
    21. Gürkaynak, Refet S. & Kisacikoglu, Burçin & Rossi, Barbara, 2013. "Do DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?," CEPR Discussion Papers 9576, C.E.P.R. Discussion Papers.
    22. Roberta Cardani & Alessia Paccagnini & Stefania Villa, 2015. "Forecasting in a DSGE Model with Banking Intermediation: Evidence from the US," Working Papers 292, University of Milano-Bicocca, Department of Economics, revised Feb 2015.
    23. Andrea Gerali & Stefano Neri & Luca Sessa & Federico M. Signoretti, 2010. "Credit and Banking in a DSGE Model of the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(s1), pages 107-141, September.
    24. Vasco Curdia & Michael Woodford, 2010. "Credit Spreads and Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(s1), pages 3-35, September.
    25. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    26. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
    27. Gabriele Galati & Richhild Moessner, 2013. "Macroprudential Policy – A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 27(5), pages 846-878, December.
    28. Charles Bean, 2010. "Joseph Schumpeter Lecture The Great Moderation, The Great Panic, and The Great Contraction," Journal of the European Economic Association, MIT Press, vol. 8(2-3), pages 289-325, 04-05.
    29. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    30. Lastrapes, William D, 1989. "Exchange Rate Volatility and U.S. Monetary Policy: An ARCH Application," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 21(1), pages 66-77, February.
    31. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    32. Goodfriend, Marvin & McCallum, Bennett T., 2007. "Banking and interest rates in monetary policy analysis: A quantitative exploration," Journal of Monetary Economics, Elsevier, vol. 54(5), pages 1480-1507, July.
    33. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    34. Fabio Canova, 2009. "What Explains The Great Moderation in the U.S.? A Structural Analysis," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 697-721, June.
    35. Giraitis, Liudas & Kapetanios, George & Theodoridis, Konstantinos & Yates, Tony, 2014. "Estimating time-varying DSGE models using minimum distance methods," Bank of England working papers 507, Bank of England.
    36. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    37. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
    38. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
    39. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    40. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    41. repec:eee:dyncon:v:78:y:2017:i:c:p:164-189 is not listed on IDEAS
    42. Cole, Harold, 2011. "Discussion of Gertler and Karadi: A model of unconventional monetary policy," Journal of Monetary Economics, Elsevier, vol. 58(1), pages 35-38, January.
    43. Gertler, Mark & Karadi, Peter, 2011. "A model of unconventional monetary policy," Journal of Monetary Economics, Elsevier, vol. 58(1), pages 17-34, January.
    44. Efrem Castelnuovo, 2012. "Fitting U.S. Trend Inflation: A Rolling-Window Approach," "Marco Fanno" Working Papers 0152, Dipartimento di Scienze Economiche "Marco Fanno".
    45. Nadal De Simone, Francisco & Clarke, Sean, 2007. "Asymmetry in business fluctuations: International evidence on Friedman's plucking model," Journal of International Money and Finance, Elsevier, vol. 26(1), pages 64-85, February.
    46. Spencer, David E., 1993. "Developing a Bayesian vector autoregression forecasting model," International Journal of Forecasting, Elsevier, vol. 9(3), pages 407-421, November.
    47. Gelain, Paolo & Ilbas, Pelin, 2017. "Monetary and macroprudential policies in an estimated model with financial intermediation," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 164-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.

    More about this item

    Keywords

    Financial frictions; DSGE; Time-varying coefficients; Extended Kalman filter; Banking sector;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucn:wpaper:201611. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nicolas Clifton). General contact details of provider: http://edirc.repec.org/data/educdie.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.