IDEAS home Printed from https://ideas.repec.org/p/uct/uconnp/2002-34.html
   My bibliography  Save this paper

Performance Evaluation of the New Connecticut Leading Employment Index Using Lead Profiles and BVAR Models

Author

Listed:
  • Anirvan Banerji

    (Economic Cycle Research Institute)

  • Pami Dua

    (Delhi School of Economics)

  • Stephen M. Miller

    (University of Nevada and University of Connecticut)

Abstract

Dua and Miller (1996) created leading and coincident employment indexes for the state of Connecticut, following Moore's (1981) work at the national level. The performance of the Dua-Miller indexes following the recession of the early 1990s fell short of expectations. This paper performs two tasks. First, it describes the process of revising the Connecticut Coincident and Leading Employment Indexes. Second, it analyzes the statistical properties and performance of the new indexes by comparing the lead profiles of the new and old indexes as well as their out-of-sample forecasting performance, using the Bayesian Vector Autoregressive (BVAR) method. The new indexes show improved performance in dating employment cycle chronologies. The lead profile test demonstrates that superiority in a rigorous, non-parametric statistic fashion. The mixed evidence on the BVAR forecasting experiments illustrates the truth in the Granger and Newbold (1986) caution that leading indexes properly predict cycle turning points and do not necessarily provide accurate forecasts except at turning points, a view that our results support.

Suggested Citation

  • Anirvan Banerji & Pami Dua & Stephen M. Miller, 2002. "Performance Evaluation of the New Connecticut Leading Employment Index Using Lead Profiles and BVAR Models," Working papers 2002-34, University of Connecticut, Department of Economics, revised Jun 2005.
  • Handle: RePEc:uct:uconnp:2002-34
    Note: Funding for Banerji.s participation came from the Connecticut Center for Economic Analysis, the Connecticut Department of Labor, and the Connecticut Department of Economic and Community Development.
    as

    Download full text from publisher

    File URL: https://media.economics.uconn.edu/working/2002-34r.pdf
    File Function: Full text (revised version)
    Download Restriction: no

    File URL: https://media.economics.uconn.edu/working/2002-34.pdf
    File Function: Full text (original version)
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sims, Christopher A., 1988. "Bayesian skepticism on unit root econometrics," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 463-474.
    2. Layton, Allan P & Moore, Geoffrey H, 1989. "Leading Indicators for the Service Sector," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 379-386, July.
    3. Cooley, Thomas F. & Leroy, Stephen F., 1985. "Atheoretical macroeconometrics: A critique," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 283-308, November.
    4. Pami Dua & Stephen Miller, 1995. "Forecasting and Analyzing Economic Activity with Coincident and Leading Indexes: The Case of Connecticut," Working papers 1995-05, University of Connecticut, Department of Economics.
    5. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    6. Zellner, Arnold & Palm, Franz, 1974. "Time series analysis and simultaneous equation econometric models," Journal of Econometrics, Elsevier, vol. 2(1), pages 17-54, May.
    7. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    8. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 8(Fall).
    9. Geoffrey H. Moore & Julius Shiskin, 1967. "Indicators of Business Expansions and Contractions," NBER Books, National Bureau of Economic Research, Inc, number moor67-2.
    10. Robert B. Litterman, 1984. "Above-average national growth in 1985 and 1986," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 8(Fall).
    11. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    12. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    13. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    14. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1, National Bureau of Economic Research, Inc.
    15. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    16. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1.
    17. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edda Claus, 2011. "Seven Leading Indexes of New Zealand Employment," The Economic Record, The Economic Society of Australia, vol. 87(276), pages 76-89, March.
    2. Rangan Gupta & Sonali Das, 2008. "Spatial Bayesian Methods Of Forecasting House Prices In Six Metropolitan Areas Of South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 76(2), pages 298-313, June.
    3. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen Miller, 2013. "Forecasting Nevada gross gaming revenue and taxable sales using coincident and leading employment indexes," Empirical Economics, Springer, vol. 44(2), pages 387-417, April.
    4. Hong Chen, 2010. "Using Financial and Macroeconomic Indicators to Forecast Sales of Large Development and Construction Firms," The Journal of Real Estate Finance and Economics, Springer, vol. 40(3), pages 310-331, April.
    5. Rangan Gupta & Moses M. Sichei, 2006. "A Bvar Model For The South African Economy," South African Journal of Economics, Economic Society of South Africa, vol. 74(3), pages 391-409, September.
    6. Rangan Gupta, 2009. "Bayesian Methods Of Forecasting Inventory Investment," South African Journal of Economics, Economic Society of South Africa, vol. 77(1), pages 113-126, March.
    7. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
    8. Rangan Gupta, 2006. "FORECASTING THE SOUTH AFRICAN ECONOMY WITH VARs AND VECMs," South African Journal of Economics, Economic Society of South Africa, vol. 74(4), pages 611-628, December.
    9. repec:emu:wpaper:dp15-01.pdf is not listed on IDEAS
    10. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
    11. Shihai Dong & Yandong Wang & Yanyan Gu & Shiwei Shao & Hui Liu & Shanmei Wu & Mengmeng Li, 2020. "Predicting the turning points of housing prices by combining the financial model with genetic algorithm," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pami Dua & Stephen Miller, 1995. "Forecasting and Analyzing Economic Activity with Coincident and Leading Indexes: The Case of Connecticut," Working papers 1995-05, University of Connecticut, Department of Economics.
    2. Francisco F. R. Ramos, 1996. "Forecasting market shares using VAR and BVAR models: A comparison of their forecasting performance," Econometrics 9601003, University Library of Munich, Germany.
    3. Ribeiro Ramos, Francisco Fernando, 2003. "Forecasts of market shares from VAR and BVAR models: a comparison of their accuracy," International Journal of Forecasting, Elsevier, vol. 19(1), pages 95-110.
    4. Pami Dua & Stephen M. Miller & David J. Smyth, 1996. "Using Leading Indicators to Forecast US Home Sales in a Bayesian VAR Framework," Working papers 1996-08, University of Connecticut, Department of Economics.
    5. Peter C.B. Phillips, 1992. "Bayes Methods for Trending Multiple Time Series with an Empirical Application to the US Economy," Cowles Foundation Discussion Papers 1025, Cowles Foundation for Research in Economics, Yale University.
    6. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    7. Rangan Gupta & Stephen Miller, 2012. "“Ripple effects” and forecasting home prices in Los Angeles, Las Vegas, and Phoenix," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 763-782, June.
    8. Pami Dua & Nishita Raje & Satyananda Sahoo, 2004. "Interest Rate Modeling and Forecasting in India," Occasional papers 3, Centre for Development Economics, Delhi School of Economics.
    9. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    10. Ford, Stephen A., 1986. "A Beginner'S Guide To Vector Autoregression," Staff Papers 13527, University of Minnesota, Department of Applied Economics.
    11. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
    12. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    13. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    14. Duo Qin, 2010. "Econometric Studies of Business Cycles in the History of Econometrics," Working Papers 669, Queen Mary University of London, School of Economics and Finance.
    15. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    16. Committee, Nobel Prize, 2011. "Thomas J. Sargent and Christopher A. Sims: Empirical Macroeconomics," Nobel Prize in Economics documents 2011-2, Nobel Prize Committee.
    17. Don H. Kim, 2008. "Challenges in macro-finance modeling," Finance and Economics Discussion Series 2008-06, Board of Governors of the Federal Reserve System (U.S.).
    18. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
    19. Simkins, Scott, 1995. "Forecasting with vector autoregressive (VAR) models subject to business cycle restrictions," International Journal of Forecasting, Elsevier, vol. 11(4), pages 569-583, December.
    20. Pami Dua & Anirvan Banerji, 2007. "Predicting Indian Business Cycles-- Leading Indices for External and Domestic Sectors," Working papers 156, Centre for Development Economics, Delhi School of Economics.

    More about this item

    Keywords

    Business cycles; leading and coincident employment indexex; turning points;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uct:uconnp:2002-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark McConnel (email available below). General contact details of provider: https://edirc.repec.org/data/deuctus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.