IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Predicting Downturns in the US Housing Market: A Bayesian Approach

  • Rangan Gupta

    ()

    (Department of Economics, University of Pretoria)

  • Sonali Das

    ()

    (LQM, CSIR, Pretoria)

This paper estimates Bayesian Vector Autoregressive (BVAR) models, both spatial and non-spatial (univariate and multivariate), for the twenty largest states of the US economy, using quarterly data over the period 1976:Q1 to 1994:Q4; and then forecasts one-to-four quarters ahead real house price growth over the out-of-sample horizon of 1995:Q1 to 2006:Q4. The forecasts are then evaluated by comparing them with the ones generated from an unrestricted classical Vector Autoregressive (VAR) model and the corresponding univariate variant the same. Finally, the models that produce the minimum average Root Mean Square Errors (RMSEs), are used to predict the downturns in the real house price growth over the recent period of 2007:Q1 to 2008:Q1. The results show that the BVARs, in whatever form they might be, are the best performing models in 19 of the 20 states. Moreover, these models do a fair job in predicting the downturn in 18 of the 19 states, however, they always under-predict the size of the decline in the real house price growth rate – an indication of the need to incorporate the role of fundamentals in the models.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by University of Pretoria, Department of Economics in its series Working Papers with number 200821.

as
in new window

Length: 21 pages
Date of creation: Jun 2008
Date of revision:
Handle: RePEc:pre:wpaper:200821
Contact details of provider: Postal: PRETORIA, 0002
Phone: (+2712) 420 2413
Fax: (+2712) 362-5207
Web page: http://www.up.ac.za/economics

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Rangan Gupta & Alain Kabundi, 2008. "A Dynamic Factor Model for Forecasting Macroeconomic Variables in South Africa," Working Papers 200815, University of Pretoria, Department of Economics.
  2. Rangan Gupta, 2009. "Bayesian Methods Of Forecasting Inventory Investment," South African Journal of Economics, Economic Society of South Africa, vol. 77(1), pages 113-126, 03.
  3. Guangling 'Dave' Liu & Rangan Gupta & Eric Schaling, 2009. "A New-Keynesian DSGE model for forecasting the South African economy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 387-404.
  4. Samuel Zita & Rangan Gupta, 2007. "Modelling and Forecasting the Metical-Rand Exchange Rate," Working Papers 200702, University of Pretoria, Department of Economics.
  5. Pami Dua & Anirvan Banerji & Stephen M. Miller, 2006. "Performance evaluation of the New Connecticut Leading Employment Index using lead profiles and BVAR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 415-437.
  6. David E. Rapach & Jack K. Strauss, 2007. "Forecasting real housing price growth in the Eighth District states," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 33-42.
  7. Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
  8. Guangling (dave Liu & Rangan Gupta, 2007. "A Small-Scale Dsge Model For Forecasting The South African Economy," South African Journal of Economics, Economic Society of South Africa, vol. 75(2), pages 179-193, 06.
  9. Rangan Gupta, 2007. "FORECASTING THE SOUTH AFRICAN ECONOMY WITH GIBBS SAMPLED BVECMs," South African Journal of Economics, Economic Society of South Africa, vol. 75(4), pages 631-643, December.
  10. Hossain Amirizadeh & Richard M. Todd, 1984. "More growth ahead for Ninth District states," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall.
  11. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
  12. Rangan Gupta, 2006. "FORECASTING THE SOUTH AFRICAN ECONOMY WITH VARs AND VECMs," South African Journal of Economics, Economic Society of South Africa, vol. 74(4), pages 611-628, December.
  13. William C. Gruben & Donald W. Hayes, 1991. "Forecasting the Louisiana economy," Economic and Financial Policy Review, Federal Reserve Bank of Dallas, issue Mar, pages 1-16.
  14. Rangan Gupta & Moses m. Sichei, 2006. "A Bvar Model For The South African Economy," South African Journal of Economics, Economic Society of South Africa, vol. 74(3), pages 391-409, 09.
  15. Rangan Gupta & Sonali Das, 2008. "Spatial Bayesian Methods Of Forecasting House Prices In Six Metropolitan Areas Of South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 76(2), pages 298-313, 06.
  16. Marco Del Negro, 2001. "Turn, turn, turn: Predicting turning points in economic activity," Economic Review, Federal Reserve Bank of Atlanta, issue Q2, pages 1-12.
  17. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall.
  18. Terrence Kinal & Jonathan Ratner, 1986. "A VAR Forecasting Model of a Regional Economy: Its Construction and Comparative Accuracy," International Regional Science Review, , vol. 10(2), pages 113-126, August.
  19. Anatoli Kuprianov & William Lupoletti, 1984. "The economic outlook for the Fifth District states in 1984 : forecasts from vector autoregression models," Economic Review, Federal Reserve Bank of Richmond, issue Jan, pages 12-23.
  20. Liu, G. & Gupta, R. & Schaling, E., 2008. "Forecasting the South African Economy : A DSGE-VAR Approach," Discussion Paper 2008-32, Tilburg University, Center for Economic Research.
  21. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-44, January.
  22. Rangan Gupta & Alain Kabundi, 2008. "Forecasting Macroeconomic Variables Using Large Datasets: Dynamic Factor Model versus Large-Scale BVARs," Working Papers 200816, University of Pretoria, Department of Economics.
  23. Dua, Pami & Miller, Stephen M & Smyth, David J, 1999. "Using Leading Indicators to Forecast U.S. Home Sales in a Bayesian Vector Autoregressive Framework," The Journal of Real Estate Finance and Economics, Springer, vol. 18(2), pages 191-205, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:200821. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rangan Gupta)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.