IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v51y2020ics1062940818303164.html
   My bibliography  Save this article

An investigation on mixed housing-cycle structures and asymmetric tail dependences

Author

Listed:
  • Chang, Kuang-Liang

Abstract

This paper designs a Markov-switching mixture Copula-based model with a mixed Markov-transition mechanism to investigate the mixed housing-cycle structures and asymmetric tail dependences for the Pacific and Mountain divisions of American regional housing markets. The empirical results demonstrate four interesting findings. First, the Markov-switching process can capture the housing cycle of each housing market. Second, the evidence of the mixed Markov-switching specification indicates that the joint housing-cycle behaviors are related not only to the total dependence mechanism, but also to the independent mechanism. Specifically, each housing market has its own characteristics, and these characteristics play relatively more important roles in determining the joint housing-cycle pattern than do common factors related to the total dependence framework. Third, the two housing markets have asymmetric tail dependences. Tail dependence exists when two markets experience the same housing-cycle modes, but does not occur when two markets experience distinct housing-cycle modes. In addition, the intensity of tail dependence is stronger when two markets remain in recession mode, as opposed to when they remain in recovery mode. This finding suggests that downward price rigidity does not exist in regional housing markets. Fourth, the spillover effects between housing returns are asymmetric.

Suggested Citation

  • Chang, Kuang-Liang, 2020. "An investigation on mixed housing-cycle structures and asymmetric tail dependences," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
  • Handle: RePEc:eee:ecofin:v:51:y:2020:i:c:s1062940818303164
    DOI: 10.1016/j.najef.2018.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940818303164
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Zimmer, 2015. "Asymmetric dependence in house prices: evidence from USA and international data," Empirical Economics, Springer, vol. 49(1), pages 161-183, August.
    2. David Michayluk & Patrick J. Wilson & Ralf Zurbruegg, 2006. "Asymmetric Volatility, Correlation and Returns Dynamics Between the U.S. and U.K. Securitized Real Estate Markets," Published Paper Series 2006-5, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. Hong Miao & Sanjay Ramchander & Marc W. Simpson, 2011. "Return and Volatility Transmission in U.S. Housing Markets," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 39(4), pages 701-741, December.
    4. Garcia, René & Tsafack, Georges, 2011. "Dependence structure and extreme comovements in international equity and bond markets," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1954-1970, August.
    5. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
    6. Jian Zhou & Randy Anderson, 2012. "Extreme Risk Measures for International REIT Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 45(1), pages 152-170, June.
    7. David Zimmer, 2015. "Time-Varying Correlation in Housing Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 51(1), pages 86-100, July.
    8. Changha Jin & Alan J. Ziobrowski, 2011. "Using Value-at-Risk to Estimate Downside Residential Market Risk," Journal of Real Estate Research, American Real Estate Society, vol. 33(3), pages 389-414.
    9. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    10. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    11. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    12. Jian Zhou & Yanmin Gao, 2012. "Tail Dependence in International Real Estate Securities Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 45(1), pages 128-151, June.
    13. Ming-Chu Chiang & I-Chun Tsai, 2016. "Ripple effect and contagious effect in the US regional housing markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(1), pages 55-82, January.
    14. Silva Filho, Osvaldo Candido da & Ziegelmann, Flavio Augusto & Dueker, Michael J., 2012. "Modeling dependence dynamics through copulas with regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 346-356.
    15. Bengoechea, Pilar & Camacho, Maximo & Perez-Quiros, Gabriel, 2006. "A useful tool for forecasting the Euro-area business cycle phases," International Journal of Forecasting, Elsevier, vol. 22(4), pages 735-749.
    16. Anson T. Y. Ho & Kim P. Huynh & David T. Jacho‐Chávez, 2016. "Flexible Estimation of Copulas: An Application to the US Housing Crisis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 603-610, April.
    17. David Michayluk & Patrick J. Wilson & Ralf Zurbruegg, 2006. "Asymmetric Volatility, Correlation and Returns Dynamics Between the U.S. and U.K. Securitized Real Estate Markets," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 34(1), pages 109-131, March.
    18. Ming-Chu Chiang & I-Chun Tsai, 2016. "Ripple effect and contagious effect in the US regional housing markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(1), pages 55-82, January.
    19. David M. Zimmer, 2012. "The Role of Copulas in the Housing Crisis," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 607-620, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Housing cycles; Dependent Markov-switching processes; Mixture copula; Asymmetric dependence; Spillover effect;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • R30 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:51:y:2020:i:c:s1062940818303164. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.