IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/80438.html
   My bibliography  Save this paper

Multivariate modelling of 10-day-ahead VaR and dynamic correlation for worldwide real estate and stock indices

Author

Listed:
  • Degiannakis, Stavros
  • Kiohos, Apostolos

Abstract

The Basel Committee regulations require the estimation of Value-at-Risk at 99% confidence level for a 10-trading-day-ahead forecasting horizon. The paper provides a multivariate modelling framework for multi-period VaR estimates for leptokurtic and asymmetrically distributed real-estate portfolio returns. The purpose of the paper is to estimate accurate 10-day-ahead 99% VaR forecasts for real estate markets along with stock markets for seven countries across the world (USA, UK, GERMANY, JAPAN, AUSTRALIA, HONG KONG and SINGAPORE) following the Basel Committee requirements for financial regulation. A fourteen-dimensional multivariate Diag-VECH model for seven equity indices and their relative real estate indices is estimated. We evaluate the VaR forecasts over a period of two weeks in calendar time, or 10 trading days, and at 99% confidence level based on the Basle Committee on Banking Supervision requirements. The Basel regulations require 10-day-ahead 99% VaR forecasts. This is the first study that provides successful evidence for 10-day-ahead 99% VaR estimations for real estate markets. Additionally, we provide evidence that there is a statistically significant relationship between the magnitude of the 10-day-ahead 99%VaR and the level of dynamic correlation for real estate and stock market indices; a valuable recommendation for risk managers who forecast risk across markets. Risk managers, investors and financial institutions require dynamic multi-period VaR forecasts that will take into account properties of financial time series. Such accurate dynamic forecasts lead to successful decisions for controlling market risks.

Suggested Citation

  • Degiannakis, Stavros & Kiohos, Apostolos, 2014. "Multivariate modelling of 10-day-ahead VaR and dynamic correlation for worldwide real estate and stock indices," MPRA Paper 80438, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:80438
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/80438/1/MPRA_paper_80438.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jian Yang & Yinggang Zhou & Wai Leung, 2012. "Asymmetric Correlation and Volatility Dynamics among Stock, Bond, and Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 45(2), pages 491-521, August.
    2. Robert Engle, 2004. "Risk and Volatility: Econometric Models and Financial Practice," American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
    3. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    4. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    5. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (US).
    6. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    7. Michael McAleer & Bernardo da Veiga, 2008. "Single-index and portfolio models for forecasting value-at-risk thresholds," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 217-235.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Stavros Degiannakis, 2008. "ARFIMAX and ARFIMAX-TARCH realized volatility modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1169-1180.
    10. Danielsson, Jon & Zigrand, Jean-Pierre, 2006. "On time-scaling of risk and the square-root-of-time rule," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
    11. Michael Mcaleer & Bernardo da Veiga, 2008. "Forecasting value-at-risk with a parsimonious portfolio spillover GARCH (PS-GARCH) model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 1-19.
    12. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    13. Clayton, Jim & MacKinnon, Greg, 2003. "The Relative Importance of Stock, Bond and Real Estate Factors in Explaining REIT Returns," The Journal of Real Estate Finance and Economics, Springer, vol. 27(1), pages 39-60, July.
    14. André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013. "Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(2), pages 400-441, March.
    15. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    16. Changha Jin & Alan J. Ziobrowski, 2011. "Using Value-at-Risk to Estimate Downside Residential Market Risk," Journal of Real Estate Research, American Real Estate Society, vol. 33(3), pages 389-414.
    17. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    18. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
    19. Kim Liow & Muhammad Ibrahim, 2010. "Volatility Decomposition and Correlation in International Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 40(2), pages 221-243, February.
    20. Martin Hoesli & Kustrim Reka, 2013. "Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 1-35, July.
    21. repec:arz:wpaper:eres2011-63 is not listed on IDEAS
    22. David Michayluk & Patrick J. Wilson & Ralf Zurbruegg, 2006. "Asymmetric Volatility, Correlation and Returns Dynamics Between the U.S. and U.K. Securitized Real Estate Markets," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 34(1), pages 109-131, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Spadafora & Marco Dubrovich & Marcello Terraneo, 2014. "Value-at-Risk time scaling for long-term risk estimation," Papers 1408.2462, arXiv.org.

    More about this item

    Keywords

    Basel Committee requirements; Diag-VECH; dynamic correlation; local correlation predictive power; multivariate ARCH; risk management; real estate market; Value-at-Risk; multi-period volatility forecasting.;

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:80438. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.