IDEAS home Printed from https://ideas.repec.org/p/fmg/fmgdps/dp439.html

On time-scaling of risk and the square–root–of–time rule

Author

Listed:
  • Jean-Pierre Zigrand

  • Jon Danielsson

Abstract

Many financial applications, such as risk analysis and derivatives pricing, depend on time scaling of risk. A common method for this purpose, though only correct when returns are iid normal, is the square root of time rule where an estimated quantile of a return distribution is scaled to a lower frequency by the square-root of the time horizon. The aim of this paper is to examine time scaling of risk when returns follow a jump diffusion process. It is argued that a jump diffusion is well-suited for the modeling of systemic risk, which is the raison d'etre of the Basel capital adequacy proposals. We demonstrate that the square root of time rule leads to a systematic underestimation of risk, whereby the degree of underestimation worsens with the time horizon,the jump intensity and the confidence level. As a result,even if the square root of time rule has widespread applications in the Basel Accords, it fails to address the objective of the Accords.

Suggested Citation

  • Jean-Pierre Zigrand & Jon Danielsson, 2003. "On time-scaling of risk and the square–root–of–time rule," FMG Discussion Papers dp439, Financial Markets Group.
  • Handle: RePEc:fmg:fmgdps:dp439
    as

    Download full text from publisher

    File URL: http://www.lse.ac.uk/fmg/workingPapers/discussionPapers/fmg_pdfs/dp439.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fmg:fmgdps:dp439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The FMG Administration (email available below). General contact details of provider: http://www.lse.ac.uk/fmg/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.