IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Fact or friction: Jumps at ultra high frequency

  • Kim Christensen

    ()

    (Aarhus University and CREATES)

  • Roel Oomen

    ()

    (Deutsche Bank, London)

  • Mark Podolskij

    ()

    (University of Heidelberg and CREATES)

In this paper, we demonstrate that jumps in financial asset prices are not nearly as common as generally thought, and that they account for only a very small proportion of total return variation. We base our investigation on an extensive set of ultra high-frequency equity and foreign exchange rate data recorded at milli-second precision, allowing us to view the price evolution at a microscopic level. We show that both in theory and practice, traditional measures of jump variation based on low-frequency tick data tend to spuriously attribute a burst of volatility to the jump component thereby severely overstating the true variation coming from jumps. Indeed, our estimates based on tick data suggest that the jump variation is an order of magnitude smaller. This finding has a number of important implications for asset pricing and risk management and we illustrate this with a delta hedging example of an option trader that is short gamma. Our econometric analysis is build around a pre-averaging theory that allows us to work at the highest available frequency, where the data are polluted bymicrostructure noise. We extend the theory in a number of directions important for jump estimation and testing. This also reveals that pre-averaging has a built-in robustness property to outliers in high-frequency data, and allows us to show that some of the few remaining jumps at tick frequency are in fact induced by data-cleaning routines aimed at removing the outliers.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/11/rp11_19.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2011-19.

as
in new window

Length: 49
Date of creation: 26 May 2011
Date of revision:
Handle: RePEc:aah:create:2011-19
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
  2. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
  3. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Papers 2003-W21, Economics Group, Nuffield College, University of Oxford.
  4. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2001. "An Empirical Investigation of Continuous-Time Equity Return Models," NBER Working Papers 8510, National Bureau of Economic Research, Inc.
  5. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
  6. Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
  7. Neil Shephard & Ole E. Barndorff-Nielsen, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Series Working Papers 2003-W18, University of Oxford, Department of Economics.
  8. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 2002. "Alternative Models for Stock Price Dynamics," CIRANO Working Papers 2002s-58, CIRANO.
  9. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
  10. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
  11. Kim Christensen & Roel Oomen & Mark Podolskij, 2010. "Realised quantile-based estimation of the integrated variance," Post-Print hal-00732538, HAL.
  12. Jun Pan & Darrell Duffie, 2001. "Analytical value-at-risk with jumps and credit risk," Finance and Stochastics, Springer, vol. 5(2), pages 155-180.
  13. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  14. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
  15. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, 06.
  16. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
  17. David S. Bates, 2006. "Maximum Likelihood Estimation of Latent Affine Processes," Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 909-965.
  18. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  19. Black, Fischer, 1986. " Noise," Journal of Finance, American Finance Association, vol. 41(3), pages 529-43, July.
  20. Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," Review of Economic Studies, Oxford University Press, vol. 80(4), pages 1304-1337.
  21. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  22. S. James Press, 1967. "A Compound Events Model for Security Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 317.
  23. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages C1-C32, November.
  24. Mark Podolskij & Mathias Vetter, 2008. "Bipower-type estimation in a noisy diffusion setting," CREATES Research Papers 2008-25, School of Economics and Management, University of Aarhus.
  25. Jun Liu & Francis A. Longstaff & Jun Pan, 2003. "Dynamic Asset Allocation with Event Risk," Journal of Finance, American Finance Association, vol. 58(1), pages 231-259, 02.
  26. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
  27. John M. Maheu & Thomas H. McCurdy, 2004. "News Arrival, Jump Dynamics, and Volatility Components for Individual Stock Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 755-793, 04.
  28. Jim Gatheral & Roel Oomen, 2010. "Zero-intelligence realized variance estimation," Finance and Stochastics, Springer, vol. 14(2), pages 249-283, April.
  29. Ball, Clifford A & Torous, Walter N, 1985. " On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-73, March.
  30. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  31. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
  32. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
  33. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
  34. Michael Johannes, 2004. "The Statistical and Economic Role of Jumps in Continuous-Time Interest Rate Models," Journal of Finance, American Finance Association, vol. 59(1), pages 227-260, 02.
  35. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  36. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
  37. Tim Bollerslev & Tzuo Hann Law & George Tauchen, 2007. "Risk, Jumps, and Diversification," CREATES Research Papers 2007-19, School of Economics and Management, University of Aarhus.
  38. Ball, Clifford A. & Torous, Walter N., 1983. "A Simplified Jump Process for Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(01), pages 53-65, March.
  39. Neil Shephard & Matthias Winkel & Ole E. Barndorff-Nielsen, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Series Working Papers 2005-FE-06, University of Oxford, Department of Economics.
  40. Lee, Charles M C & Ready, Mark J, 1991. " Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-46, June.
  41. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2007. "Microstructure noise in the continuous case: the pre-averaging approach," Technical Reports 2007,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  42. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
  43. Jiang, George J. & Lo, Ingrid & Verdelhan, Adrien, 2011. "Information Shocks, Liquidity Shocks, Jumps, and Price Discovery: Evidence from the U.S. Treasury Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(02), pages 527-551, April.
  44. Bates, David S., 2012. "U.S. stock market crash risk, 1926–2010," Journal of Financial Economics, Elsevier, vol. 105(2), pages 229-259.
  45. Beckers, Stan, 1981. "A Note on Estimating the Parameters of the Diffusion-Jump Model of Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 16(01), pages 127-140, March.
  46. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
  47. Cecilia Mancini, 2009. "Non-parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296.
  48. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, School of Economics and Management, University of Aarhus.
  49. Jarrow, Robert A & Rosenfeld, Eric R, 1984. "Jump Risks and the Intertemporal Capital Asset Pricing Model," The Journal of Business, University of Chicago Press, vol. 57(3), pages 337-51, July.
  50. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
  51. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, 06.
  52. Thierry Ané & Hélyette Geman, 2000. "Order Flow, Transaction Clock, and Normality of Asset Returns," Journal of Finance, American Finance Association, vol. 55(5), pages 2259-2284, October.
  53. George J. Jiang & Roel C. A. Oomen, 2007. "Estimating Latent Variables and Jump Diffusion Models Using High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 1-30.
  54. repec:oxf:wpaper:264 is not listed on IDEAS
  55. Roll, Richard, 1984. " A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-39, September.
  56. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
  57. Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394.
  58. Fulvio Corsi & Roberto Ren�, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2011-19. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.