IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v5y2007i1p1-30.html
   My bibliography  Save this article

Estimating Latent Variables and Jump Diffusion Models Using High-Frequency Data

Author

Listed:
  • George J. Jiang
  • Roel C. A. Oomen

Abstract

This article proposes a new approach to exploit the information in high-frequency data for the statistical inference of continuous-time affine jump diffusion (AJD) models with latent variables. For this purpose, we construct unbiased estimators of the latent variables and their power functions on the basis of the observed state variables over extended horizons. With the estimates of the latent variables, we propose a generalized method of moments (GMM) procedure for the estimation of AJD models with the distinguishing feature that moments of both observed and latent state variables can be used without resorting to path simulation or discretization of the continuous-time process. Using high frequency return observations of the S&P 500 index, we implement our estimation approach to various continuous-time asset return models with stochastic volatility and random jumps. Copyright 2007, Oxford University Press.

Suggested Citation

  • George J. Jiang & Roel C. A. Oomen, 2007. "Estimating Latent Variables and Jump Diffusion Models Using High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 1-30.
  • Handle: RePEc:oup:jfinec:v:5:y:2007:i:1:p:1-30
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbl007
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    2. P. Hartmann & S. Straetmans & C. G. de Vries, 2004. "Asset Market Linkages in Crisis Periods," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 313-326, February.
    3. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    4. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Wu, Guojun, 2001. "The Determinants of Asymmetric Volatility," Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 837-859.
    7. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    8. Koutmos, Gregory & Booth, G Geoffrey, 1995. "Asymmetric volatility transmission in international stock markets," Journal of International Money and Finance, Elsevier, vol. 14(6), pages 747-762, December.
    9. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Dušan Isakov & Christophe Pérignon, 2000. "On the dynamic interdependence of international stock markets: A Swiss perspective," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 136(II), pages 123-146, June.
    12. Jones, Charles M. & Lamont, Owen & Lumsdaine, Robin L., 1998. "Macroeconomic news and bond market volatility," Journal of Financial Economics, Elsevier, vol. 47(3), pages 315-337, March.
    13. Lorenzo Cappiello, 2000. "Do fixed income securities also show asymmetric effects in conditional second moments?," Swiss Finance Institute Research Paper Series rp12, Swiss Finance Institute.
    14. Booth, G. Geoffrey & Martikainen, Teppo & Tse, Yiuman, 1997. "Price and volatility spillovers in Scandinavian stock markets," Journal of Banking & Finance, Elsevier, vol. 21(6), pages 811-823, June.
    15. Engle, Robert F, 1998. "Macroeconomic Announcements and Volatility of Treasury Futures," University of California at San Diego, Economics Working Paper Series qt7rd4g3bk, Department of Economics, UC San Diego.
    16. John T. Scruggs, 1998. "Resolving the Puzzling Intertemporal Relation between the Market Risk Premium and Conditional Market Variance: A Two-Factor Approach," Journal of Finance, American Finance Association, vol. 53(2), pages 575-603, April.
    17. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(01), pages 17-43, March.
    18. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 1998. "Information and volatility linkages in the stock, bond, and money markets," Journal of Financial Economics, Elsevier, vol. 49(1), pages 111-137, July.
    19. Brooks, Chris & Henry, Olan T., 2000. "Linear and non-linear transmission of equity return volatility: evidence from the US, Japan and Australia," Economic Modelling, Elsevier, vol. 17(4), pages 497-513, December.
    20. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    21. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    22. Andrew Ang & Geert Bekaert, 1999. "International Asset Allocation with Time-Varying Correlations," NBER Working Papers 7056, National Bureau of Economic Research, Inc.
    23. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    24. Fratzscher, Marcel, 2002. "Financial Market Integration in Europe: On the Effects of EMU on Stock Markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 7(3), pages 165-193, July.
    25. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    26. Martens, Martin & Poon, Ser-Huang, 2001. "Returns synchronization and daily correlation dynamics between international stock markets," Journal of Banking & Finance, Elsevier, vol. 25(10), pages 1805-1827, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanousek Jan & Kočenda Evžen & Novotný Jan, 2012. "The identification of price jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 53-77, January.
    2. Fleming, Jeff & Paye, Bradley S., 2011. "High-frequency returns, jumps and the mixture of normals hypothesis," Journal of Econometrics, Elsevier, vol. 160(1), pages 119-128, January.
    3. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    4. Chiarella, Carl & Hung, Hing & T, Thuy-Duong, 2009. "The volatility structure of the fixed income market under the HJM framework: A nonlinear filtering approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2075-2088, April.
    5. esposito, francesco paolo & cummins, mark, 2015. "Filtering and likelihood estimation of latent factor jump-diffusions with an application to stochastic volatility models," MPRA Paper 64987, University Library of Munich, Germany.
    6. Stanislav Khrapov, 2011. "Pricing Central Tendency in Volatility," Working Papers w0168, Center for Economic and Financial Research (CEFIR).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:5:y:2007:i:1:p:1-30. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sofieea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.