IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v80y2013i4p1304-1337.html
   My bibliography  Save this article

On the Correlation Structure of Microstructure Noise: A Financial Economic Approach

Author

Listed:
  • Francis X. Diebold
  • Georg Strasser

Abstract

We introduce the financial economics of market microstructure to the financial econometrics of asset return volatility estimation. In particular, we derive the cross-correlation function between latent returns and market microstructure noise in several leading microstructure environments. We propose and illustrate several corresponding theory-inspired volatility estimators, which we apply to stock and oil prices. Our analysis and results are useful for assessing the validity of the frequently assumed independence of latent price and microstructure noise, for explaining observed cross-correlation patterns, for predicting as-yet undiscovered patterns, and most importantly, for promoting improved microstructure-based volatility empirics and improved empirical microstructure studies. Simultaneously and conversely, our analysis is far from the last word on the subject, as it is based on stylized benchmark models; it comes with a "call to action" for development and use of richer microstructure models in volatility estimation and beyond. Copyright 2013, Oxford University Press.

Suggested Citation

  • Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," Review of Economic Studies, Oxford University Press, vol. 80(4), pages 1304-1337.
  • Handle: RePEc:oup:restud:v:80:y:2013:i:4:p:1304-1337
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/restud/rdt008
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert F. & Patton, Andrew J., 2004. "Impacts of trades in an error-correction model of quote prices," Journal of Financial Markets, Elsevier, vol. 7(1), pages 1-25, January.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    3. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    4. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    5. John Owens & Douglas G. Steigerwald, 2005. "Inferring Information Frequency and Quality," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 500-524.
    6. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    7. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    8. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    9. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Subsampling realised kernels," Journal of Econometrics, Elsevier, vol. 160(1), pages 204-219, January.
    10. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," Review of Economic Studies, Oxford University Press, vol. 75(2), pages 339-369.
    11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, Elsevier.
    13. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    14. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    15. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    16. Foster, F Douglas & Viswanathan, S, 1996. " Strategic Trading When Agents Forecast the Forecasts of Others," Journal of Finance, American Finance Association, vol. 51(4), pages 1437-1478, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim Christensen & Roel Oomen & Roberto Renò, 2016. "The Drift Burst Hypothesis," CREATES Research Papers 2016-28, Department of Economics and Business Economics, Aarhus University.
    2. Simon Clinet & Yoann Potiron, 2017. "Testing if the market microstructure noise is a function of the limit order book," Papers 1709.02502, arXiv.org, revised Feb 2018.
    3. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    4. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
    5. Pierre Chausse & Dinghai Xu, 2012. "GMM Estimation of a Stochastic Volatility Model with Realized Volatility: A Monte Carlo Study," Working Papers 1203, University of Waterloo, Department of Economics, revised May 2012.
    6. Andersen, Torben G. & Cebiroglu, Gökhan & Hautsch, Nikolaus, 2017. "Volatility, information feedback and market microstructure noise: A tale of two regimes," CFS Working Paper Series 569, Center for Financial Studies (CFS).
    7. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    8. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
    9. Simon Clinet & Yoann Potiron, 2017. "Estimation for high-frequency data under parametric market microstructure noise," Papers 1712.01479, arXiv.org.
    10. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2014. "Bootstrap Inference for Pre-averaged Realized Volatility based on Nonoverlapping Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 12(4), pages 679-707.
    11. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    12. Dong, Yingjie & Tse, Yiu-Kuen, 2017. "On estimating market microstructure noise variance," Economics Letters, Elsevier, vol. 150(C), pages 59-62.
    13. repec:eee:econom:v:201:y:2017:i:1:p:127-143 is not listed on IDEAS
    14. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    15. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
    16. Victor Bello Accioly & Beatriz Vaz de Melo Mendes, 2016. "Assessing the Impact of the Realized Range on the (E)GARCH Volatility: Evidence from Brazil," Brazilian Business Review, Fucape Business School, vol. 13(2), pages 1-26, March.
    17. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.

    More about this item

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:80:y:2013:i:4:p:1304-1337. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.