IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

When was the U.S. housing downturn predictable? A comparison of univariate forecasting methods

  • Zietz, Joachim
  • Traian, Anca

This paper uses three classes of univariate time series techniques (ARIMA type models, switching regression models, and state-space/structural time series models) to forecast, on an ex post basis, the downturn in U.S. housing prices starting around 2006. The performance of the techniques is compared within each class and across classes by out-of-sample forecasts for a number of different forecast points prior to and during the downturn. Most forecasting models are able to predict a downturn in future home prices by mid 2006. Some state-space models can predict an impending downturn as early as June 2005. State-space/structural time series models tend to produce the most accurate forecasts, although they are not necessarily the models with the best in-sample fit.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal The Quarterly Review of Economics and Finance.

Volume (Year): 54 (2014)
Issue (Month): 2 ()
Pages: 271-281

in new window

Handle: RePEc:eee:quaeco:v:54:y:2014:i:2:p:271-281
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000. "A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 9/00, Monash University, Department of Econometrics and Business Statistics.
  2. Rob J. Hyndman & Yeasmin Khandakar, . "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, American Statistical Association, vol. 27(i03).
  3. Gordon W. Crawford & Michael C. Fratantoni, 2003. "Assessing the Forecasting Performance of Regime-Switching, ARIMA and GARCH Models of House Prices," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 31(2), pages 223-243, 06.
  4. Jacques J. F. Commandeur & Siem Jan Koopman & Marius Ooms, . "Statistical Software for State Space Methods," Journal of Statistical Software, American Statistical Association, vol. 41(i01).
  5. Sonali Das & Rangan Gupta & Alain Kabundi, 2011. "Forecasting regional house price inflation: a comparison between dynamic factor models and vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(2), pages 288-302, March.
  6. Joshua Gallin, 2006. "The Long-Run Relationship between House Prices and Income: Evidence from Local Housing Markets," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 34(3), pages 417-438, 09.
  7. Matteo Iacoviello & Stefano Neri, 2008. "Housing market spillovers : evidence from an estimated DSGE model," Working Paper Research 145, National Bank of Belgium.
  8. D'Agostino, Antonello & McQuinn, Kieran & O' Reilly, Gerard, 2008. "Identifying and Forecasting House Price Dynamics in Ireland," Research Technical Papers 3/RT/08, Central Bank of Ireland.
  9. Campbell, Sean D. & Davis, Morris A. & Gallin, Joshua & Martin, Robert F., 2009. "What moves housing markets: A variance decomposition of the rent-price ratio," Journal of Urban Economics, Elsevier, vol. 66(2), pages 90-102, September.
  10. Rangan Gupta & Alan Kabundi & Stephen M. Miller, 2010. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 1001, University of Nevada, Las Vegas , Department of Economics.
  11. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
  12. Joshua Gallin, 2008. "The Long-Run Relationship Between House Prices and Rents," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(4), pages 635-658, December.
  13. Commandeur, Jacques J.F. & Koopman, Siem Jan, 2007. "An Introduction to State Space Time Series Analysis," OUP Catalogue, Oxford University Press, number 9780199228874.
  14. Roland Füss & Michael Stein & Joachim Zietz, 2012. "A Regime-Switching Approach to Modeling Rental Prices of U.K. Real Estate Sectors," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 40(2), pages 317-350, 06.
  15. Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
  16. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
  17. Harvey, Andrew, 1997. "Trends, Cycles and Autoregressions," Economic Journal, Royal Economic Society, vol. 107(440), pages 192-201, January.
  18. W. Miles, 2008. "Boom–Bust Cycles and the Forecasting Performance of Linear and Non-Linear Models of House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 36(3), pages 249-264, April.
  19. William D. Larson, 2010. "Evaluating Alternative Methods of Forecasting House Prices: A Post-Crisis Reassessment," Working Papers 2010-004, The George Washington University, Department of Economics, Research Program on Forecasting, revised Feb 2011.
  20. Engle, Robert F & Smith, Aaron, 1998. "Stochastic Permanent Breaks," University of California at San Diego, Economics Working Paper Series qt99v0s0zx, Department of Economics, UC San Diego.
  21. repec:cup:cbooks:9780521770415 is not listed on IDEAS
  22. Steven Clark & T. Coggin, 2009. "Trends, Cycles and Convergence in U.S. Regional House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 39(3), pages 264-283, October.
  23. MeiChi Huang, 2012. "Forecasts and implications of the current housing crisis: switching regimes in a threshold framework," Applied Economics Letters, Taylor & Francis Journals, vol. 19(6), pages 557-568, April.
  24. repec:cup:cbooks:9780521779654 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:54:y:2014:i:2:p:271-281. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.