IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes

  • Mehmet Balcilar

    (Eastern Mediterranean University)

  • Rangan Gupta

    (University of Pretoria)

  • Anandamayee Majumdar

    (Arizona State University)

  • Stephen M. Miller

    (University of Connecticut and University of Nevada, Las Vegas)

This paper provides out-of-sample forecasts of Nevada gross gaming revenue and taxable sales using a battery of linear and non-linear forecasting models and univariate and multivariate techniques. The linear models include vector autoregressive and vector error-correction models with and without Bayesian priors. The non-linear models include non-parametric and semi-parametric models, smooth transition autoregressive models and artificial neural network autoregressive models. In addition to gross gaming revenue and taxable sales, we employ recently constructed coincident and leading employment indexes for Nevada's economy. We conclude that non-linear models generally outperform linear models in forecasting future movements in gross gaming revenue and taxable sales.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://web2.uconn.edu/economics/working/2010-21.pdf
File Function: Full text
Download Restriction: no

Paper provided by University of Connecticut, Department of Economics in its series Working papers with number 2010-21.

as
in new window

Length: 47 pages
Date of creation: Jul 2010
Date of revision:
Publication status: Published in Empirical Economics
Handle: RePEc:uct:uconnp:2010-21
Contact details of provider: Postal:
University of Connecticut 365 Fairfield Way, Unit 1063 Storrs, CT 06269-1063

Phone: (860) 486-4889
Fax: (860) 486-4463
Web page: http://www.econ.uconn.edu/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Norman R. Swanson & Halbert White, 1995. "A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Macroeconomics 9503004, EconWPA.
  2. Philip Rothman, 1998. "Forecasting Asymmetric Unemployment Rates," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 164-168, February.
  3. Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
  4. J. S. Shonkwiler, 1992. "A Structural Time Series Model Of Nevada Gross Taxable Gaming Revenues," The Review of Regional Studies, Southern Regional Science Association, vol. 22(3), pages 239-249, Winter.
  5. Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
  6. Zellner, Arnold & Palm, Franz, 1974. "Time series analysis and simultaneous equation econometric models," Journal of Econometrics, Elsevier, vol. 2(1), pages 17-54, May.
  7. Massimiliano Marcellino, . "Forecasting EMU macroeconomic variables," Working Papers 216, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  8. Costas Milas & Ruthira Naraidoo, 2009. "Financial Market Conditions, Real Time, Nonlinearity and European Central Bank Monetary Policy: In-Sample and Out-of-Sample Assessment," Working Papers 200923, University of Pretoria, Department of Economics.
  9. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-44, January.
  10. Psaradakis, Zacharias & Ravn, Morten O & Sola, Martin, 2003. "Markov Switching Causality and the Money-Output Relationship," CEPR Discussion Papers 3803, C.E.P.R. Discussion Papers.
  11. Thomas F. Cargill & Steven A. Morus, 1988. "A vector autoregression model of the Nevada economy," Economic Review, Federal Reserve Bank of San Francisco, issue Win, pages 21-32.
  12. Dua, Pami & Miller, Stephen M, 1996. "Forecasting Connecticut Home Sales in a BVAR Framework Using Coincident and Leading Indexes," The Journal of Real Estate Finance and Economics, Springer, vol. 13(3), pages 219-35, November.
  13. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
  14. David A. Dickey & Dennis W. Jansen & Daniel L. Thornton, 1991. "A primer on cointegration with an application to money and income," Review, Federal Reserve Bank of St. Louis, issue Mar, pages 58-78.
  15. Anirvan Banerji & Pami Dua & Stephen M. Miller, 2002. "Performance Evaluation of the New Connecticut Leading Employment Index Using Lead Profiles and BVAR Models," Working papers 2002-34, University of Connecticut, Department of Economics, revised Jun 2005.
  16. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  17. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  18. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
  19. Rothman, Philip & van Dijk, Dick & null, Philip Hans, 2001. "Multivariate Star Analysis Of Money Output Relationship," Macroeconomic Dynamics, Cambridge University Press, vol. 5(04), pages 506-532, September.
  20. Philippe J. Deschamps, 2008. "Comparing smooth transition and Markov switching autoregressive models of US unemployment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(4), pages 435-462.
  21. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-75, July.
  22. Thomas F. Cargill & William R. Eadington, 1978. "Nevada's Gaming Revenues: Time Characteristics and Forecasting," Management Science, INFORMS, vol. 24(12), pages 1221-1230, August.
  23. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  24. De Gooijer, Jan G. & Vidiella-i-Anguera, Antoni, 2004. "Forecasting threshold cointegrated systems," International Journal of Forecasting, Elsevier, vol. 20(2), pages 237-253.
  25. Geetesh Bhardwaj & Norman Swanson, 2004. "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Departmental Working Papers 200422, Rutgers University, Department of Economics.
  26. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
  27. Massimiliano Marcellino, . "Instability and non-linearity in the EMU," Working Papers 211, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  28. Lisi, Francesco & Schiavo, Rosa A., 1999. "A comparison between neural networks and chaotic models for exchange rate prediction," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 87-102, March.
  29. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uct:uconnp:2010-21. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark McConnel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.