IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v13y1995i3p265-75.html
   My bibliography  Save this article

A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks

Author

Listed:
  • Swanson, Norman R
  • White, Halbert

Abstract

We take a model selection approach to the question of whether forward interest rates are useful in predicting future spot rates, using a variety of out-of-sample forecast-based model selection criteria: forecast mean squared error, forecast direction accuracy, and forecast-based trading system profitability. We also examine the usefulness of a class of novel prediction models called 'artificial neural networks,' and investigate the issue of appropriate window sizes for rolling-window-based prediction methods. Results indicate that the premium of the forward rate over the spot rate helps to predict the sign of future changes in the interest rate. Further, model selection based on an in-sample Schwarz Information Criterion (SIC) does not appear to be a reliable guide to out-of-sample performance, in the case of short-term interest rates. Thus, the in-sample SIC apparently fails to offer a convenient shortcut to true out-of-sample performance measures.

Suggested Citation

  • Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
  • Handle: RePEc:bes:jnlbes:v:13:y:1995:i:3:p:265-75
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:13:y:1995:i:3:p:265-75. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.