IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks"

by Swanson, Norman R & White, Halbert

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Khurshid M. KIANI & Terry L. KASTENS, 2006. "Using Macro-Financial Variables To Forecast Recessions. An Analysis Of Canada, 1957-2002," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 6(3).
  2. Vroomen, Bjorn & Hans Franses, Philip & van Nierop, Erjen, 2004. "Modeling consideration sets and brand choice using artificial neural networks," European Journal of Operational Research, Elsevier, vol. 154(1), pages 206-217, April.
  3. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
  4. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
  5. Mayte Suarez -Farinas & Carlos E. Pedreira & Marcelo C. Medeiros, 2004. "Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1092-1107, December.
  6. Norman Swanson & Oleg Korenok, 2006. "How Sticky Is Sticky Enough? A Distributional and Impulse Response Analysis of New Keynesian DSGE Models. Extended Working Paper Version," Departmental Working Papers 200612, Rutgers University, Department of Economics.
  7. Norman R. Swanson & Halbert White, 1995. "A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Macroeconomics 9503004, EconWPA.
  8. Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016. "Nonlinear forecasting with many predictors using kernel ridge regression," International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
  9. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, june. pag.
  10. Kiani, K.M., 2009. "Neural Networks to Detect Nonlinearities in Time Series: Analysis of Business Cycle in France and the United Kingdom," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 9(1).
  11. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
  12. Martha A. Misas A. & Enrique López E. & Carlos A. Arango A. & Juan Nicolás Hernández A., 2004. "No-linealidades en la demanda de efectivo en Colombia: las redes neuronales como herramienta de pronóstico," Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 22(45), pages 10-57, Junio.
  13. repec:bdr:ensayo:v::y:2004:i:45:p:10-57 is not listed on IDEAS
  14. Oliver Blaskowitz & Helmut Herwartz, 2008. "Testing directional forecast value in the presence of serial correlation," SFB 649 Discussion Papers SFB649DP2008-073, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  15. Kanas, Angelos & Yannopoulos, Andreas, 2001. "Comparing linear and nonlinear forecasts for stock returns," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 383-398, December.
  16. Granger, E.J. & Swanson, N.R., 1996. "An introduction to stochastic Unit Root Processes," Papers 4-96-3, Pennsylvania State - Department of Economics.
  17. Bekdache, Basma, 2001. "Term Premia and the Maturity Composition of the Federal Debt: New Evidence from the Term Structure of Interest Rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(7), pages 519-39, November.
  18. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen Miller, 2010. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working Papers 15-01, Eastern Mediterranean University, Department of Economics.
  19. Valentina Corradi & Norman Swanson, 2003. "Some Recent Developments in Predictive Accuracy Testing With Nested Models and (Generic) Nonlinear Alternatives," Departmental Working Papers 200316, Rutgers University, Department of Economics.
  20. Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.
  21. Ferland, Rene & Lalancette, Simon, 2006. "Dynamics of realized volatilities and correlations: An empirical study," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2109-2130, July.
  22. Yvon Fauvel & Alain Paquet & Christian Zimmermann, 1999. "A Survey on Interest Rate Forecasting," Cahiers de recherche CREFE / CREFE Working Papers 87, CREFE, Université du Québec à Montréal.
  23. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, Elsevier.
  24. Corradi, Valentina & Swanson, Norman R. & Olivetti, Claudia, 2001. "Predictive ability with cointegrated variables," Journal of Econometrics, Elsevier, vol. 104(2), pages 315-358, September.
  25. M Sensier & M Artis & C R Birchenhall & D R Osborn, 2002. "Domestic and International Influences on Business Cycle Regimes in Europe," The School of Economics Discussion Paper Series 0202, Economics, The University of Manchester.
  26. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
  27. Martha Misas A. & Enrique López E. & Carlos A. Arango A. & Juan Nicolás Hernández A., 2003. "La Demanda de Efectivo en Colombia: Una Caja Nagra a la Luz de las Redes Neuronales," BORRADORES DE ECONOMIA 002963, BANCO DE LA REPÚBLICA.
  28. Georgios Kouretas & Eleni Constantinou & Robert Georgiades & Avo Kazandjian, 2005. "Regime Switching and Artificial Neural Network Forecasting of the Cyprus Stock Exchange Daily Returns," Money Macro and Finance (MMF) Research Group Conference 2005 46, Money Macro and Finance Research Group.
  29. Dilip M. Nachane & Jose G. Clavel, 2005. "Forecasting interest rates: A Comparative assessment of some second generation non-linear model," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2005-009, Indira Gandhi Institute of Development Research, Mumbai, India.
  30. Bildirici, Melike & Alp, Aykaç, 2008. "The Relationship Between Wages and Productivity: TAR Unit Root and TAR Cointegration Approach," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 5(1), pages 93-110.
  31. Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
  32. Oliver Blaskowitz & Helmut Herwartz, 2009. "Adaptive forecasting of the EURIBOR swap term structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 575-594.
  33. Lance J. Bachmeier & Norman R. Swanson, 2003. "Predicting Inflation: Does The Quantity Theory Help?," Departmental Working Papers 200317, Rutgers University, Department of Economics.
  34. Corina SAMAN, 2015. "Out-Of-Sample Forecasting Performance Of A Robust Neural Exchange Rate Model Of Ron/Usd," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 93-106, March.
  35. René Garcia & Ramazan Gençay, 1998. "Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity Hint," CIRANO Working Papers 98s-35, CIRANO.
  36. Clive Bowsher & Roland Meeks, 2006. "High Dimensional Yield Curves: Models and Forecasting," Economics Series Working Papers 2006-FE-11, University of Oxford, Department of Economics.
  37. Corradi, V. & Swanson, N.R., 2000. "A Consistent Test for Nonlinear Out of Sample Predictive Accuracy," Discussion Papers 0012, Exeter University, Department of Economics.
  38. Qi, Min & Zhang, Guoqiang Peter, 2001. "An investigation of model selection criteria for neural network time series forecasting," European Journal of Operational Research, Elsevier, vol. 132(3), pages 666-680, August.
  39. Khurshid Kiani, 2011. "Fluctuations in Economic and Activity and Stabilization Policies in the CIS," Computational Economics, Society for Computational Economics, vol. 37(2), pages 193-220, February.
  40. PREMINGER, Arie & FRANCK, Raphael, . "Forecasting exchange rates: a robust regression approach," CORE Discussion Papers RP 1917, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  41. Martha Misas Arango & Enrique López Enciso & Pablo Querubín, 2002. "La Inflación En Colombia: Una Aproximación Desde Las Redes Neuronales," ENSAYOS SOBRE POLÍTICA ECONÓMICA, BANCO DE LA REPÚBLICA - ESPE, vol. 20(41-42), pages 143-214, June.
  42. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
  43. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
  44. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
  45. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
  46. Kajal Lahiri & Liu Yang, 2012. "Forecasting Binary Outcomes," Discussion Papers 12-09, University at Albany, SUNY, Department of Economics.
  47. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
  48. Eric Ghysels & Norman R. Swanson & Myles Callan, 2002. "Monetary Policy Rules with Model and Data Uncertainty," Southern Economic Journal, Southern Economic Association, vol. 69(2), pages 239-265, October.
  49. Alfaro, Rodrigo & Becerra, Juan Sebastian & Sagner, Andres, 2010. "Estimación de la estructura de tasas utilizando el modelo Dinámico Nelson Siegel: resultados para Chile y EEUU
    [The Dynamic Nelson-Siegel model: empirical results for Chile and US]
    ," MPRA Paper 25912, University Library of Munich, Germany, revised 23 Jun 2010.
  50. Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.
  51. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
  52. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Society for Computational Economics, vol. 40(3), pages 245-264, October.
  53. Richard G. Anderson & Jane M. Binner & Vincent A. Schmidt, 2011. "Connectionist-based rules describing the pass-through of individual goods prices into trend inflation in the United States," Working Papers 2011-007, Federal Reserve Bank of St. Louis.
  54. Angelos Kanas, 2003. "Non-linear forecasts of stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 299-315.
  55. McAleer, Michael & Medeiros, Marcelo C. & Slottje, Daniel, 2008. "A neural network demand system with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 147(2), pages 359-371, December.
  56. Krishna, Kala & Ozyildirim, Ataman & Swanson, Norman R., 2003. "Trade, investment and growth: nexus, analysis and prognosis," Journal of Development Economics, Elsevier, vol. 70(2), pages 479-499, April.
  57. Qi, Min, 2001. "Predicting US recessions with leading indicators via neural network models," International Journal of Forecasting, Elsevier, vol. 17(3), pages 383-401.
  58. Francis X. Diebold & Canlin Li, 2003. "Forecasting the Term Structure of Government Bond Yields," NBER Working Papers 10048, National Bureau of Economic Research, Inc.
  59. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Regime Switching and Artificial Neural Network Forecasting," Working Papers 0502, University of Crete, Department of Economics.
  60. Khurshid Kiani & Terry Kastens, 2008. "Testing Forecast Accuracy of Foreign Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural Network Architectures," Computational Economics, Society for Computational Economics, vol. 32(4), pages 383-406, November.
  61. Kiani, Khurshid M., 2016. "On business cycle fluctuations in USA macroeconomic time series," Economic Modelling, Elsevier, vol. 53(C), pages 179-186.
  62. Eisinga, R. & Franses, Ph.H.B.F. & van Dijk, D.J.C., 1997. "Timing of Vote Decision in First and Second Order Dutch Elections 1978-1995: Evidence from Artificial Neural Networks," Econometric Institute Research Papers EI 9733/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.