IDEAS home Printed from
   My bibliography  Save this paper

Forecasting interest rates: A Comparative assessment of some second generation non-linear model


  • Dilip M. Nachane

    () (Indira Gandhi Institute of Development Research)

  • Jose G. Clavel

    () (Universidad de Murcia)


Modelling and forecasting of interest rates has traditionally proceeded in the framework of linear stationary models such as ARMA and VAR, but only with moderate success. We examine here four models which account for several specific features of real world asset prices such as non-stationarity and non-linearity. Our four candidate models are based respectively on wavelet analysis, mixed spectrum analysis, non-linear ARMA models with Fourier coefficients, and the Kalman filter. These models are applied to weekly data on interest rates in India, and their forecasting performance is evaluated vis-…-vis three GARCH models (GARCH (1,1), GARCH-M (1,1) and EGARCH (1,1)) as well as the random walk model. The Kalman filter model emerges at the top, with wavelet and mixed spectrum models also showing considerable promise.

Suggested Citation

  • Dilip M. Nachane & Jose G. Clavel, 2005. "Forecasting interest rates: A Comparative assessment of some second generation non-linear model," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2005-009, Indira Gandhi Institute of Development Research, Mumbai, India.
  • Handle: RePEc:ind:igiwpp:2005-009

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    3. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    4. Ludlow, Jorge & Enders, Walter, 2000. "Estimating non-linear ARMA models using Fourier coefficients," International Journal of Forecasting, Elsevier, vol. 16(3), pages 333-347.
    5. Pami Dua & Nishita Raje & Satyananda Sahoo, 2004. "Interest Rate Modeling and Forecasting in India," Occasional papers 3, Centre for Development Economics, Delhi School of Economics.
    6. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    7. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    8. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    9. Guy Melard, 1985. "Examples of the evolutionary spectrum theory," ULB Institutional Repository 2013/13696, ULB -- Universite Libre de Bruxelles.
    10. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
    2. Duan, Qihong & Wei, Ying & Chen, Zhiping, 2014. "Relationship between the benchmark interest rate and a macroeconomic indicator," Economic Modelling, Elsevier, vol. 38(C), pages 220-226.

    More about this item


    Interest rates; wavelets; mixed spectra; non-linear ARMA; Kalman filter; GARCH; Forecast encompassing;

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ind:igiwpp:2005-009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamprasad M. Pujar). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.