IDEAS home Printed from
   My bibliography  Save this article

Applying neural network Poisson regression to predict cognitive score changes


  • Nader Fallah
  • Arnold Mitnitski
  • Kenneth Rockwood


In this study, we combined a Poisson regression model with neural networks (neural network Poisson regression) to relax the traditional Poisson regression assumption of linearity of the Poisson mean as a function of covariates, while including it as a special case. In four simulated examples, we found that the neural network Poisson regression improved the performance of simple Poisson regression if the Poisson mean was nonlinearly related to covariates. We also illustrated the performance of the model in predicting five-year changes in cognitive scores, in association with age and education level; we found that the proposed approach had superior accuracy to conventional linear Poisson regression. As the interpretability of the neural networks is often difficult, its combination with conventional and more readily interpretable approaches under the generalized linear model can benefit applications in biomedicine.

Suggested Citation

  • Nader Fallah & Arnold Mitnitski & Kenneth Rockwood, 2011. "Applying neural network Poisson regression to predict cognitive score changes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 2051-2062, November.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:2051-2062
    DOI: 10.1080/02664763.2010.545112

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:2051-2062. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.