IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v20y2004i2p201-217.html
   My bibliography  Save this article

Flexible regression models and relative forecast performance

Author

Listed:
  • Dahl, Christian M.
  • Hylleberg, Svend

Abstract

No abstract is available for this item.

Suggested Citation

  • Dahl, Christian M. & Hylleberg, Svend, 2004. "Flexible regression models and relative forecast performance," International Journal of Forecasting, Elsevier, vol. 20(2), pages 201-217.
  • Handle: RePEc:eee:intfor:v:20:y:2004:i:2:p:201-217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(03)00100-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Timmermann, Allan G., 1994. "A generalization of the non-parametric Henriksson-Merton test of market timing," Economics Letters, Elsevier, vol. 44(1-2), pages 1-7.
    2. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    3. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    4. Dahl, Christian M. & Gonzalez-Rivera, Gloria, 2003. "Testing for neglected nonlinearity in regression models based on the theory of random fields," Journal of Econometrics, Elsevier, vol. 114(1), pages 141-164, May.
    5. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    6. Hamilton, James D, 2001. "A Parametric Approach to Flexible Nonlinear Inference," Econometrica, Econometric Society, vol. 69(3), pages 537-573, May.
    7. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    8. Christian M. Dahl, 2002. "An investigation of tests for linearity and the accuracy of likelihood based inference using random fields," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 263-284, June.
    9. Aldrin, Magne & Bolviken, Erik & Schweder, Tore, 1993. "Projection pursuit regression for moderate non-linearities," Computational Statistics & Data Analysis, Elsevier, vol. 16(4), pages 379-403, October.
    10. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    11. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    2. Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
    3. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    4. Norman Swanson & Oleg Korenok, 2006. "The Incremental Predictive Information Associated with Using Theoretical New Keynesian DSGE Models Versus Simple Linear Alternatives," Departmental Working Papers 200615, Rutgers University, Department of Economics.
    5. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    6. Derek Bond & Michael J. Harrison & Niall Hession & Edward J. O'Brien, 2006. "Some Empirical Observations on the Forward Exchange Rate Anomaly," Trinity Economics Papers tep2006, Trinity College Dublin, Department of Economics.
    7. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    8. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
    9. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2007. "Demand for Money: A Study in Testing Time Series for Long Memory and Nonlinearity," The Economic and Social Review, Economic and Social Studies, vol. 38(1), pages 1-24.
    10. Adnan Aktepe & Emre Yanık & Süleyman Ersöz, 2021. "Demand forecasting application with regression and artificial intelligence methods in a construction machinery company," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1587-1604, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    2. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    3. Krishna, Kala & Ozyildirim, Ataman & Swanson, Norman R., 2003. "Trade, investment and growth: nexus, analysis and prognosis," Journal of Development Economics, Elsevier, vol. 70(2), pages 479-499, April.
    4. Bildirici, Melike & Alp, Aykaç, 2008. "The Relationship Between Wages and Productivity: TAR Unit Root and TAR Cointegration Approach," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 5(1), pages 93-110.
    5. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    6. Chihwa Kao & Yongmiao Hong, 2004. "Detecting Neglected Nonlinearity in Dynamic Panel Data with Time-Varying Conditional Heteroskedasticity," Econometric Society 2004 Far Eastern Meetings 753, Econometric Society.
    7. Khurshid M. Kiani, 2009. "Asymmetries in Macroeconomic Time Series in Eleven Asian Economies," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 8(1), pages 37-54, April.
    8. Blaskowitz, Oliver J. & Herwartz, Helmut, 2009. "On economic evaluation of directional forecasts," SFB 649 Discussion Papers 2009-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
    10. repec:wyi:journl:002062 is not listed on IDEAS
    11. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    12. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    13. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    14. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2006. "Purchasing Power Parity: The Irish Experience Re-visited," Trinity Economics Papers tep200615, Trinity College Dublin, Department of Economics.
    15. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    16. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
    19. Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.
    20. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    21. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2007. "Demand for Money: A Study in Testing Time Series for Long Memory and Nonlinearity," The Economic and Social Review, Economic and Social Studies, vol. 38(1), pages 1-24.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:20:y:2004:i:2:p:201-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.