IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v28y2009i7p575-594.html
   My bibliography  Save this article

Adaptive forecasting of the EURIBOR swap term structure

Author

Listed:
  • Oliver Blaskowitz

    (Institute of Statistics and Econometrics, Humboldt-Universität zu Berlin, Germany)

  • Helmut Herwartz

    (Institute of Statistics and Econometrics, Christian-Albrechts-Universität zu Kiel, Germany)

Abstract

In this paper we adopt a principal components analysis (PCA) to reduce the dimensionality of the term structure and employ autoregressive (AR) models to forecast principal components which, in turn, are used to forecast swap rates. Arguing in favour of structural variation, we propose data-driven, adaptive model selection strategies based on the PCA|AR model. To evaluate ex ante forecasting performance for particular rates, distinct forecast features, such as mean squared errors, directional accuracy and directional forecast value, are considered. It turns out that, relative to benchmark models, the adaptive approach offers additional forecast accuracy in terms of directional accuracy and directional forecast value. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Oliver Blaskowitz & Helmut Herwartz, 2009. "Adaptive forecasting of the EURIBOR swap term structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 575-594.
  • Handle: RePEc:jof:jforec:v:28:y:2009:i:7:p:575-594
    DOI: 10.1002/for.1121
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1121
    File Function: Link to full text; subscription required
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Monika Piazzesi & Glenn D. Rudebusch, 2005. "Modeling Bond Yields in Finance and Macroeconomics," American Economic Review, American Economic Association, vol. 95(2), pages 415-420, May.
    2. Wolfgang Hardle & Helmut Herwartz & Vladimir Spokoiny, 2003. "Time Inhomogeneous Multiple Volatility Modeling," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 55-95.
    3. Jun Liu & Francis A. Longstaff & Ravit E. Mandell, 2006. "The Market Price of Risk in Interest Rate Swaps: The Roles of Default and Liquidity Risks," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2337-2360, September.
    4. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    5. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    6. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Oller, Lars-Erik & Barot, Bharat, 2000. "The accuracy of European growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 16(3), pages 293-315.
    9. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    10. Duffie, Darrell & Singleton, Kenneth J, 1997. "An Econometric Model of the Term Structure of Interest-Rate Swap Yields," Journal of Finance, American Finance Association, vol. 52(4), pages 1287-1321, September.
    11. Lai, Kon S., 1990. "An evaluation of survey exchange rate forecasts," Economics Letters, Elsevier, vol. 32(1), pages 61-65, January.
    12. Lars E. O. Svensson, 1994. "Estimating and Interpreting Forward Interest Rates; Sweden 1992-1994," IMF Working Papers 1994/114, International Monetary Fund.
    13. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    14. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    15. Knez, Peter J & Litterman, Robert & Scheinkman, Jose Alexandre, 1994. "Explorations into Factors Explaining Money Market Returns," Journal of Finance, American Finance Association, vol. 49(5), pages 1861-1882, December.
    16. Robert R. Bliss, 1997. "Movements in the term structure of interest rates," Economic Review, Federal Reserve Bank of Atlanta, vol. 82(Q 4), pages 16-33.
    17. Lars E.O. Svensson, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992 - 1994," NBER Working Papers 4871, National Bureau of Economic Research, Inc.
    18. Blaskowitz, Oliver J. & Herwartz, Helmut & de Cadenas Santiago, Gonzalo, 2005. "Modeling the FIBOR/EURIBOR Swap Term Structure: An Empirical Approach," Economics Working Papers 2005-04, Christian-Albrechts-University of Kiel, Department of Economics.
    19. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    20. Francesco Audrino, 2005. "The Stability of Factor Models of Interest Rates," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(3), pages 422-441.
    21. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    22. Ash, J. C. K. & Smyth, D. J. & Heravi, S. M., 1998. "Are OECD forecasts rational and useful?: a directional analysis," International Journal of Forecasting, Elsevier, vol. 14(3), pages 381-391, September.
    23. Eli M Remolona & Philip D Wooldridge, 2003. "The euro interest rate swap market," BIS Quarterly Review, Bank for International Settlements, March.
    24. Svensson, Lars E O, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992-4," CEPR Discussion Papers 1051, C.E.P.R. Discussion Papers.
    25. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    26. Professor E. Philip Davis, 2001. "Some evidence on financial factors in the determination of aggregate business investment for the G7," National Institute of Economic and Social Research (NIESR) Discussion Papers 187, National Institute of Economic and Social Research.
    27. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    28. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    29. Hartzmark, Michael L, 1991. "Luck versus Forecast Ability: Determinants of Trader Performance in Futures Markets," The Journal of Business, University of Chicago Press, vol. 64(1), pages 49-74, January.
    30. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    31. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costantini, Mauro & Crespo Cuaresma, Jesus & Hlouskova, Jaroslava, 2014. "Can Macroeconomists Get Rich Forecasting Exchange Rates?," Department of Economics Working Paper Series 176, WU Vienna University of Economics and Business.
    2. Wellmann, Dennis & Trück, Stefan, 2018. "Factors of the term structure of sovereign yield spreads," Journal of International Money and Finance, Elsevier, vol. 81(C), pages 56-75.
    3. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    4. Bergmeir, Christoph & Costantini, Mauro & Benítez, José M., 2014. "On the usefulness of cross-validation for directional forecast evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 132-143.
    5. Dauwe, Alexander & Moura, Marcelo L., 2011. "Forecasting the term structure of the Euro Market using Principal Component Analysis," Insper Working Papers wpe_233, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    6. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    7. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
    8. Chen, Qiwei & Costantini, Mauro & Deschamps, Bruno, 2016. "How accurate are professional forecasts in Asia? Evidence from ten countries," International Journal of Forecasting, Elsevier, vol. 32(1), pages 154-167.
    9. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    2. Rui Chen & Jiri Svec & Maurice Peat, 2016. "Forecasting the Government Bond Term Structure in Australia," Australian Economic Papers, Wiley Blackwell, vol. 55(2), pages 99-111, June.
    3. Blaskowitz, Oliver J. & Herwartz, Helmut & de Cadenas Santiago, Gonzalo, 2005. "Modeling the FIBOR/EURIBOR Swap Term Structure: An Empirical Approach," Economics Working Papers 2005-04, Christian-Albrechts-University of Kiel, Department of Economics.
    4. Chadha, Jagjit S. & Waters, Alex, 2014. "Applying a macro-finance yield curve to UK quantitative Easing," Journal of Banking & Finance, Elsevier, vol. 39(C), pages 68-86.
    5. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
    6. Ioannidis, Christos & Ka, Kook, 2018. "The impact of oil price shocks on the term structure of interest rates," Energy Economics, Elsevier, vol. 72(C), pages 601-620.
    7. Alejandra Lelo-de-Larrea, 2020. "Forecast Comparison of the Term Structure of Interest Rates of Mexico for Different Specifications of the Affine Model," Working Papers 2020-01, Banco de México.
    8. Michiel De Pooter & Francesco Ravazzolo & Dick Van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
    9. Koo, B. & La Vecchia, D. & Linton, O., 2019. "Nonparametric Recovery of the Yield Curve Evolution from Cross-Section and Time Series Information," Cambridge Working Papers in Economics 1916, Faculty of Economics, University of Cambridge.
    10. Zura Kakushadze & Willie Yu, 2020. "Machine Learning Treasury Yields," Bulletin of Applied Economics, Risk Market Journals, vol. 7(1), pages 1-65.
    11. Galvao, Ana Beatriz & Costa, Sonia, 2013. "Does the euro area forward rate provide accurate forecasts of the short rate?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 131-141.
    12. Faria, Adriano & Almeida, Caio, 2018. "A hybrid spline-based parametric model for the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 72-94.
    13. Zura Kakushadze & Willie Yu, 2020. "Machine Learning Treasury Yields," Papers 2003.05095, arXiv.org.
    14. Koo, Bonsoo & La Vecchia, Davide & Linton, Oliver, 2021. "Estimation of a nonparametric model for bond prices from cross-section and time series information," Journal of Econometrics, Elsevier, vol. 220(2), pages 562-588.
    15. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    16. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    17. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    18. Audzeyeva, Alena & Fuertes, Ana-Maria, 2018. "On the predictability of emerging market sovereign credit spreads," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 140-157.
    19. Guidolin, Massimo & Timmermann, Allan, 2009. "Forecasts of US short-term interest rates: A flexible forecast combination approach," Journal of Econometrics, Elsevier, vol. 150(2), pages 297-311, June.
    20. Michał Brzoza-Brzezina & Jacek Kotłowski, 2014. "Measuring the natural yield curve," Applied Economics, Taylor & Francis Journals, vol. 46(17), pages 2052-2065, June.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G29 - Financial Economics - - Financial Institutions and Services - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:28:y:2009:i:7:p:575-594. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.