IDEAS home Printed from https://ideas.repec.org/p/fip/fedgif/993.html

Term structure forecasting using macro factors and forecast combination

Author

Abstract

We examine the importance of incorporating macroeconomic information and, in particular, accounting for model uncertainty when forecasting the term structure of U.S. interest rates. We start off by analyzing and comparing the forecast performance of several individual term structure models. Our results confirm and extend results found in previous literature that adding macroeconomic information, through factors extracted from a large number of individual series, tends to improve interest rate forecasts. We then show, however, that the predictive power of individual models varies over time significantly. Models with macro factors are the more accurate in and around recession periods. Models without macro factors do particularly well in low-volatility subperiods such as the late 1990s. We demonstrate that this problem of model uncertainty can be mitigated by combining individual model forecasts. Combining forecasts leads to encouraging gains in predictability, especially for longer-dated maturities, and importantly, these gains are consistent over time.

Suggested Citation

  • Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgif:993
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/ifdp/2010/993/default.htm
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/ifdp/2010/993/ifdp993.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizondo Rocío, 2013. "Forecasting the Term Structure of Interest Rates in Mexico Using an Affine Model," Working Papers 2013-03, Banco de México.
    2. Wellmann, Dennis & Trück, Stefan, 2018. "Factors of the term structure of sovereign yield spreads," Journal of International Money and Finance, Elsevier, vol. 81(C), pages 56-75.
    3. Oleksandr Castello & Marina Resta, 2025. "Optimal Time Varying Parameters in Yield Curve Modeling and Forecasting: A Simulation Study on BRICS Countries," Computational Economics, Springer;Society for Computational Economics, vol. 65(4), pages 2081-2113, April.
    4. Vieira, Fausto & Fernandes, Marcelo & Chague, Fernando, 2017. "Forecasting the Brazilian yield curve using forward-looking variables," International Journal of Forecasting, Elsevier, vol. 33(1), pages 121-131.
    5. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    6. João F. Caldeira & Guilherme V. Moura & , Fabricio Tourrucôo, 2016. "Forecasting the yield curve with the arbitrage-free dynamic Nelson-Siegel model: Brazilian evidence," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 17(2), pages 221-237.
    7. Christian Kascha & Carsten Trenkler, 2011. "Cointegrated VARMA models and forecasting US interest rates," ECON - Working Papers 033, Department of Economics - University of Zurich.
    8. Rui Liu, 2019. "Forecasting Bond Risk Premia with Unspanned Macroeconomic Information," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-62, March.
    9. Elizondo Rocío, 2023. "The Three Intelligible Factors of the Yield Curve in Mexico," Working Papers 2023-13, Banco de México.
    10. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    11. repec:ctc:serie1:def10 is not listed on IDEAS
    12. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    13. Andrea Fronzetti Colladon & Stefano Grassi & Francesco Ravazzolo & Francesco Violante, 2023. "Forecasting financial markets with semantic network analysis in the COVID‐19 crisis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1187-1204, August.
    14. Monticini, Andrea & Ravazzolo, Francesco, 2014. "Forecasting the intraday market price of money," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
    15. Gordon H. Dash & Nina Kajiji & Domenic Vonella, 2018. "The role of supervised learning in the decision process to fair trade US municipal debt," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 139-168, June.
    16. Rui Chen & Jiri Svec & Maurice Peat, 2016. "Forecasting the Government Bond Term Structure in Australia," Australian Economic Papers, Wiley Blackwell, vol. 55(2), pages 99-111, June.
    17. Eran Raviv, 2013. "Prediction Bias Correction for Dynamic Term Structure Models," Tinbergen Institute Discussion Papers 13-041/III, Tinbergen Institute.
    18. Kučera, Adam, 2020. "Identification of triggers of U.S. yield curve movements," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    19. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    20. Stuart, Rebecca, 2018. "A quarterly Phillips curve for Switzerland using interpolated data, 1963–2016," Economic Modelling, Elsevier, vol. 70(C), pages 78-86.
    21. Kučera, Adam & Kočenda, Evžen & Maršál, Aleš, 2025. "Yield curve dynamics and fiscal policy shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 178(C).
    22. Fernandes, Marcelo & Vieira, Fausto, 2019. "A dynamic Nelson–Siegel model with forward-looking macroeconomic factors for the yield curve in the US," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    23. Joseph P Byrne & Shuo Cao, 2024. "Decomposing Uncertainty in Macro-Finance Term Structure Models," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 14(3), pages 428-449.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgif:993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.