IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i4d10.1007_s10614-024-10619-z.html
   My bibliography  Save this article

Optimal Time Varying Parameters in Yield Curve Modeling and Forecasting: A Simulation Study on BRICS Countries

Author

Listed:
  • Oleksandr Castello

    (University of Genoa)

  • Marina Resta

    (University of Genoa)

Abstract

The term structure of interest rates is a fundamental decision–making tool for various economic activities. Despite the huge number of contributions in the field, the development of a reliable framework for both fitting and forecasting under various market conditions (either stable or very volatile) still remains a topical issue. Motivated by this problem, this study introduces a methodology relying on optimal time–varying parameters for three and five factor models in the Nelson–Siegel class that can be employed for an effective in-sample fitting and out–of–sample forecasting of the term structure. In detail, for the in–sample fitting we discussed a two–step estimation procedure leading to optimal models parameters and evaluated the performances of this approach in terms of flexibility and fitting accuracy gains. For what it concerns the forecasting, we suggest an approach overcoming the well–known issue between the stability of factor models’ parameters and the optimal dynamic decay terms. To such aim, we use either autoregressive or machine learning techniques as local data generating processes based on the optimal parameters time series derived in the in–line fitting step. The so–obtained values are then employed to get day–ahead predictions of the yield curve. We assessed the proposed framework on daily spot rates of the BRICS (Brazil, Russia, India, China and South Africa) bond market. The experimental analysis illustrated that (i) time–varying parameters ensure a significant boost in the models fitting power and a more faithful representation of the yield curves dynamics; (ii) the proposed approach provides also stable and accurate predictions.

Suggested Citation

  • Oleksandr Castello & Marina Resta, 2025. "Optimal Time Varying Parameters in Yield Curve Modeling and Forecasting: A Simulation Study on BRICS Countries," Computational Economics, Springer;Society for Computational Economics, vol. 65(4), pages 2081-2113, April.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10619-z
    DOI: 10.1007/s10614-024-10619-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10619-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10619-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhattarai, Saroj & Chatterjee, Arpita & Park, Woong Yong, 2021. "Effects of US quantitative easing on emerging market economies," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).
    2. Umar, Zaghum & Riaz, Yasir & Aharon, David Y., 2022. "Network connectedness dynamics of the yield curve of G7 countries," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 275-288.
    3. Jens H. E. Christensen & Francis X. Diebold & Glenn D. Rudebusch, 2009. "An arbitrage-free generalized Nelson--Siegel term structure model," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 33-64, November.
    4. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    5. João F. Caldeira & Guilherme V. Moura & , Fabricio Tourrucôo, 2016. "Forecasting the yield curve with the arbitrage-free dynamic Nelson-Siegel model: Brazilian evidence," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 17(2), pages 221-237.
    6. Chiţu, Livia & Quint, Dominic, 2018. "Emerging market vulnerabilities – a comparison with previous crises," Economic Bulletin Boxes, European Central Bank, vol. 8.
    7. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    8. Refet S. Gürkaynak & Jonathan H. Wright, 2012. "Macroeconomics and the Term Structure," Journal of Economic Literature, American Economic Association, vol. 50(2), pages 331-367, June.
    9. Periklis Gogas & Theophilos Papadimitriou & Maria Matthaiou & Efthymia Chrysanthidou, 2015. "Yield Curve and Recession Forecasting in a Machine Learning Framework," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 635-645, April.
    10. Jacob Muvingi & Takudzwa Kwinjo, 2014. "Estimation of Term Structures using Nelson-Siegel and Nelson-Siegel-Svensson: A Case of a Zimbabwean Bank," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 4(6), pages 1-9.
    11. Jushan Bai & Pierre Perron, 2003. "Critical values for multiple structural change tests," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 72-78, June.
    12. Linton, Oliver & Mammen, Enno & Nielsen, Jans Perch & Tanggaard, Carsten, 2001. "Yield curve estimation by kernel smoothing methods," Journal of Econometrics, Elsevier, vol. 105(1), pages 185-223, November.
    13. Victor Curtis Lartey & Yao Li, 2018. "Zero-Coupon and Forward Yield Curves for Government of Ghana Bonds," SAGE Open, , vol. 8(3), pages 21582440188, September.
    14. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    15. Nagy, Krisztina, 2020. "Term structure estimation with missing data: Application for emerging markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 347-360.
    16. Victor Curtis Lartey & Yao Li & Hannah Darkoa Lartey & Eric Kofi Boadi, 2019. "Zero-Coupon, Forward, and Par Yield Curves for the Nigerian Bond Market," SAGE Open, , vol. 9(4), pages 21582440198, October.
    17. Zoricic, Davor & Orsag, Silvije, 2013. "Parametric Yield Curve Modeling In An Illiquid And Undeveloped Financial Market," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 4(3), pages 243-252.
    18. Idilbi-Bayaa, Yasmeen & Qadan, Mahmoud, 2022. "What the current yield curve says, and what the future prices of energy do," Resources Policy, Elsevier, vol. 75(C).
    19. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    20. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    21. Fernandes, Marcelo & Vieira, Fausto, 2019. "A dynamic Nelson–Siegel model with forward-looking macroeconomic factors for the yield curve in the US," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    22. Yasmeen Idilbi-Bayaa & Mahmoud Qadan, 2021. "Forecasting Commodity Prices Using the Term Structure," JRFM, MDPI, vol. 14(12), pages 1-39, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koeda, Junko & Sekine, Atsushi, 2022. "Nelson–Siegel decay factor and term premia in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 64(C).
    2. Levant, Jared & Ma, Jun, 2017. "A dynamic Nelson-Siegel yield curve model with Markov switching," Economic Modelling, Elsevier, vol. 67(C), pages 73-87.
    3. Renata Tavanielli & Márcio Laurini, 2023. "Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market," Mathematics, MDPI, vol. 11(11), pages 1-28, June.
    4. Lorenčič Eva, 2016. "Testing the Performance of Cubic Splines and Nelson-Siegel Model for Estimating the Zero-coupon Yield Curve," Naše gospodarstvo/Our economy, Sciendo, vol. 62(2), pages 42-50, June.
    5. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    6. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    7. Makushkin, Mikhail & Lapshin, Victor, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    8. Dick, Christian D. & Schmeling, Maik & Schrimpf, Andreas, 2013. "Macro-expectations, aggregate uncertainty, and expected term premia," European Economic Review, Elsevier, vol. 58(C), pages 58-80.
    9. Gaygysyz Guljanov & Willi Mutschler & Mark Trede, 2022. "Pruned Skewed Kalman Filter and Smoother: With Application to the Yield Curve," CQE Working Papers 10122, Center for Quantitative Economics (CQE), University of Muenster.
    10. Erhard RESCHENHOFER & Thomas STARK, 2019. "Forecasting the Yield Curve with Dynamic Factors," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 101-113, March.
    11. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    12. Luis Ceballos & Alberto Naudon & Damián Romero, 2016. "Nominal term structure and term premia: evidence from Chile," Applied Economics, Taylor & Francis Journals, vol. 48(29), pages 2721-2735, June.
    13. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    14. Chen, Jiazi & Hong, Zhiwu & Niu, Linlin, 2025. "Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution," International Journal of Forecasting, Elsevier, vol. 41(1), pages 153-174.
    15. Leo Krippner, 2009. "A theoretical foundation for the Nelson and Siegel class of yield curve models," Reserve Bank of New Zealand Discussion Paper Series DP2009/10, Reserve Bank of New Zealand.
    16. Paccagnini, Alessia, 2016. "The macroeconomic determinants of the US term structure during the Great Moderation," Economic Modelling, Elsevier, vol. 52(PA), pages 216-225.
    17. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Switching Nelson-Siegel Models," BAFFI CAREFIN Working Papers 19106, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    18. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," MPRA Paper 63844, University Library of Munich, Germany.
    19. Kaya, Huseyin, 2013. "The yield curve and the macroeconomy: Evidence from Turkey," Economic Modelling, Elsevier, vol. 32(C), pages 100-107.
    20. Badics, Milan Csaba & Huszar, Zsuzsa R. & Kotro, Balazs B., 2023. "The impact of crisis periods and monetary decisions of the Fed and the ECB on the sovereign yield curve network," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10619-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.