IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i1p153-174.html
   My bibliography  Save this article

Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution

Author

Listed:
  • Chen, Jiazi
  • Hong, Zhiwu
  • Niu, Linlin

Abstract

An extended dynamic Nelson–Siegel (DNS) model is developed with an additional functional demographic (FD) factor that considers the overall demographic age distribution as a persistent end-shifting driving force. The FD factor in the extended DNS model improves the accuracy of the yield curve forecast by reducing both bias and variance compared with the random walk model, the DNS model, the DNS model with a simple demographic factor of a middle-to-young age ratio, and a benchmark end-shifting model. The model with an unspanned FD factor performs substantially better than the alternative models for most maturities at forecast horizons between one and five years.

Suggested Citation

  • Chen, Jiazi & Hong, Zhiwu & Niu, Linlin, 2025. "Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution," International Journal of Forecasting, Elsevier, vol. 41(1), pages 153-174.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:153-174
    DOI: 10.1016/j.ijforecast.2024.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:153-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.