IDEAS home Printed from https://ideas.repec.org/a/jae/japmet/v12y1997i2p169-79.html
   My bibliography  Save this article

Feasible Cross-Validatory Model Selection for General Stationary Processes

Author

Listed:
  • Racine, Jeff

Abstract

Cross-validation is a method used to estimate the expected prediction error of a model. Such estimates may be of interest in themselves, but their use for model selection is more common. Unfortunately, cross-validation is viewed as being computationally expensive in many situations. In this paper it is shown that the h-block cross-validation function for least-squares based estimators can be expressed in a form which enormously impact on the amount of calculation required. The standard approach is of O(T[superscript 2]) where T denotes the sample size, while the proposed approach is of O(T) and yields identical numerical results The proposed approach has widespread potential application ranging from the estimation of expected prediction error to least squares-based model specification to the selection of the series order for non-parametric series estimation. The technique is valid for general stationary observations. Simulation results and applications are considered.

Suggested Citation

  • Racine, Jeff, 1997. "Feasible Cross-Validatory Model Selection for General Stationary Processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 169-179, March-Apr.
  • Handle: RePEc:jae:japmet:v:12:y:1997:i:2:p:169-79
    as

    Download full text from publisher

    File URL: http://qed.econ.queensu.ca:80/jae/1997-v12.2/
    File Function: Supporting data files and programs
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González Andrés & Teräsvirta Timo, 2008. "Modelling Autoregressive Processes with a Shifting Mean," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-28, March.
    2. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    3. Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
    4. Kevin Boyle & Christopher Parmeter & Brent Boehlert & Robert Paterson, 2013. "Due Diligence in Meta-analyses to Support Benefit Transfers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(3), pages 357-386, July.
    5. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
    6. Petar Sorić & Ivana Lolić, 2015. "A note on forecasting euro area inflation: leave- $$h$$ h -out cross validation combination as an alternative to model selection," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 205-214, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:12:y:1997:i:2:p:169-79. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.