IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting Government Bond Yields with Large Bayesian VARs

  • Carriero, Andrea
  • Kapetanios, George
  • Marcellino, Massimiliano

We propose a new approach to forecasting the term structure of interest rates, which allows to efficiently extract the information contained in a large panel of yields. In particular, we use a large Bayesian Vector Autoregression (BVAR) with an optimal amount of shrinkage towards univariate AR models. Focusing on the U.S., we provide an extensive study on the forecasting performance of our proposed model relative to most of the existing alternative specifications. While most of the existing evidence focuses on statistical measures of forecast accuracy, we also evaluate the performance of the alternative forecasts when used within trading schemes or as a basis for portfolio allocation. We extensively check the robustness of our results via subsample analysis and via a data based Monte Carlo simulation. We find that: i) our proposed BVAR approach produces forecasts systematically more accurate than the random walk forecasts, though the gains are small; ii) some models beat the BVAR for a few selected maturities and forecast horizons, but they perform much worse than the BVAR in the remaining cases; iii) predictive gains with respect to the random walk have decreased over time; iv) different loss functions (i.e., "statistical" vs "economic") lead to different ranking of specific models; v) modelling time variation in term premia is important and useful for forecasting.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=7796
Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 7796.

as
in new window

Length:
Date of creation: Apr 2010
Date of revision:
Handle: RePEc:cpr:ceprdp:7796
Contact details of provider: Postal: Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ.
Phone: 44 - 20 - 7183 8801
Fax: 44 - 20 - 7183 8820

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andrea Carriero & Raffaella Giacomini, 2011. "How useful are no-arbitrage restrictions for forecasting the term structure of interest rates?," Post-Print hal-00844809, HAL.
  2. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
  3. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," CEPR Discussion Papers 7446, C.E.P.R. Discussion Papers.
  4. Allan Timmermann & M. Hashem Pesaran, 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," CESifo Working Paper Series 990, CESifo Group Munich.
  5. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-68, November.
  6. Kadiyala, K. Rao & Karlsson, Sune, 1994. "Numerical Aspects of Bayesian VAR-modeling," SSE/EFI Working Paper Series in Economics and Finance 12, Stockholm School of Economics.
  7. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
  8. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1986. "Forecasting and conditional projection using realistic prior distribution," Staff Report 93, Federal Reserve Bank of Minneapolis.
  9. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  10. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," Working Papers 634, Queen Mary University of London, School of Economics and Finance.
  11. Carlo A. Favero & Linlin Niu & Luca Sala, 2007. "Term Structure Forecasting: No-arbitrage Restrictions vs. Large Information Set," Working Papers 318, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  12. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
  13. Almeida, Caio Ibsen Rodrigues de & Vicente, José Valentim M., 2007. "The Role of No-Arbitrage on Forecasting: Lessons from a Parametric Term Structure Model," Economics Working Papers (Ensaios Economicos da EPGE) 657, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  14. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  15. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank, Research Centre.
  16. Marcellino, Massimiliano & Stock, James H & Watson, Mark W, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," CEPR Discussion Papers 4976, C.E.P.R. Discussion Papers.
  17. de Jong, Frank, 1999. "Time-series and Cross-section Information in Affine Term Structure Models," CEPR Discussion Papers 2065, C.E.P.R. Discussion Papers.
  18. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, 02.
  19. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
  20. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-89, October.
  21. Francis X. Diebold & Glenn D. Rudebusch & S. Boragan Aruoba, 2004. "The Macroeconomy and the Yield Curve: A Dynamic Latent Factor Approach," NBER Working Papers 10616, National Bureau of Economic Research, Inc.
  22. Ho, Mun S & Sorensen, Bent E, 1996. "Finding Cointegration Rank in High Dimensional Systems Using the Johansen Test: An Illustration Using Data Based Monte Carlo Simulations," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 726-32, November.
  23. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
  24. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:7796. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

The email address of this maintainer does not seem to be valid anymore. Please ask to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.