IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Forecasting large datasets with Bayesian reduced rank multivariate models

  • Andrea Carriero
  • George Kapetanios
  • Massimiliano Marcellino

The paper addresses the issue of forecasting a large set of variables using multivariate models. In particular, we propose three alternative reduced rank forecasting models and compare their predictive performance for US time series with the most promising existing alternatives, namely, factor models, large scale Bayesian VARs, and multivariate boosting. Speci.cally, we focus on classical reduced rank regression, a two-step procedure that applies, in turn, shrinkage and reduced rank restrictions, and the reduced rank Bayesian VAR of Geweke (1996). We .nd that using shrinkage and rank reduction in combination rather than separately improves substantially the accuracy of forecasts, both when the whole set of variables is to be forecast, and for key variables such as industrial production growth, inflation, and the federal funds rate. The robustness of this finding is confirmed by a Monte Carlo experiment based on bootstrapped data. We also provide a consistency result for the reduced rank regression valid when the dimension of the system tends to infinity, which opens the ground to use large scale reduced rank models for empirical analysis.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Applied Econometrics.

Volume (Year): 26 (2011)
Issue (Month): 5 (08)
Pages: 735-761

in new window

Handle: RePEc:wly:japmet:v:26:y:2011:i:5:p:735-761
Contact details of provider: Web page:

Order Information: Web: Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
  2. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer, vol. 90(1), pages 27-42, March.
  3. Pesaran, M.H. & Timmermann, A., 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," Cambridge Working Papers in Economics 0331, Faculty of Economics, University of Cambridge.
  4. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  5. James D. Hamilton & Daniel F. Waggoner & Tao Zha, 2007. "Normalization in Econometrics," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 221-252.
  6. Canova, Fabio & Ciccarelli, Matteo, 2001. "Forecasting and Turning Point Predictions in a Bayesian Panel VAR Model," CEPR Discussion Papers 2961, C.E.P.R. Discussion Papers.
  7. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1986. "Forecasting and conditional projection using realistic prior distribution," Staff Report 93, Federal Reserve Bank of Minneapolis.
  8. Kadiyala, K. Rao & Karlsson, Sune, 1994. "Numerical Aspects of Bayesian VAR-modeling," SSE/EFI Working Paper Series in Economics and Finance 12, Stockholm School of Economics.
  9. Frank Kleibergen & Herman K. van Dijk, 1998. "Bayesian Simultaneous Equations Analysis using Reduced Rank Structures," Tinbergen Institute Discussion Papers 98-025/4, Tinbergen Institute.
  10. Lutz Kilian & Atsushi Inoue, 2004. "Bagging Time Series Models," Econometric Society 2004 North American Summer Meetings 110, Econometric Society.
  11. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  12. Camba-Mendez, Gonzalo, et al, 2003. "Tests of Rank in Reduced Rank Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 145-55, January.
  13. Ziegler, Christina & Eickmeier, Sandra, 2006. "How good are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Discussion Paper Series 1: Economic Studies 2006,42, Deutsche Bundesbank, Research Centre.
  14. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
  15. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
  16. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  17. n/a, 2001. "A Comparison of Personal Sector Saving Rates in the UK, US and Italy," NIESR Discussion Papers 150, National Institute of Economic and Social Research.
  18. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  19. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  20. John F. Geweke, 1995. "Bayesian reduced rank regression in econometrics," Working Papers 540, Federal Reserve Bank of Minneapolis.
  21. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, 07.
  22. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  23. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:26:y:2011:i:5:p:735-761. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.