IDEAS home Printed from https://ideas.repec.org/a/jae/japmet/v24y2009i4p607-629.html
   My bibliography  Save this article

Boosting diffusion indices

Author

Listed:
  • Jushan Bai

    (Department of Economics, New York University, New York, USA)

  • Serena Ng

    (Department of Economics, Columbia University, New York, USA)

Abstract

In forecasting and regression analysis, it is often necessary to select predictors from a large feasible set. When the predictors have no natural ordering, an exhaustive evaluation of all possible combinations of the predictors can be computationally costly. This paper considers 'boosting' as a methodology of selecting the predictors in factor-augmented autoregressions. As some of the predictors are being estimated, we propose a stopping rule for boosting to prevent the model from being overfitted with estimated predictors. We also consider two ways of handling lags of variables: a componentwise approach and a block-wise approach. The best forecasting method will necessarily depend on the data-generating process. Simulations show that for each data type there is one form of boosting that performs quite well. When applied to four key economic variables, some form of boosting is found to outperform the standard factor-augmented forecasts and is far superior to an autoregressive forecast. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
  • Handle: RePEc:jae:japmet:v:24:y:2009:i:4:p:607-629
    DOI: 10.1002/jae.1063
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/jae.1063
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: http://qed.econ.queensu.ca:80/jae/2009-v24.4/
    File Function: Supporting data files and programs
    Download Restriction: no

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    4. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
    5. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    6. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    7. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    8. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    9. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-247, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:24:y:2009:i:4:p:607-629. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.