IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2015-74.html
   My bibliography  Save this paper

Forecasting with Sufficient Dimension Reductions

Author

Listed:
  • Alessandro Barbarino
  • Efstathia Bura

Abstract

Factor models have been successfully employed in summarizing large datasets with few underlying latent factors and in building time series forecasting models for economic variables. When the objective is to forecast a target variable y with a large set of predictors x, the construction of the summary of the xs should be driven by how informative on y it is. Most existing methods first reduce the predictors and then forecast y in independent phases of the modeling process. In this paper we present an alternative and potentially more attractive alternative: summarizing x as it relates to y, so that all the information in the conditional distribution of y|x is preserved. These y-targeted reductions of the predictors are obtained using Sufficient Dimension Reduction techniques. We show in simulations and real data analysis that forecasting models based on sufficient reductions have the potential of significantly improved performance.

Suggested Citation

  • Alessandro Barbarino & Efstathia Bura, 2015. "Forecasting with Sufficient Dimension Reductions," Finance and Economics Discussion Series 2015-74, Board of Governors of the Federal Reserve System (US).
  • Handle: RePEc:fip:fedgfe:2015-74
    DOI: 10.17016/FEDS.2015.074
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/econresdata/feds/2015/files/2015074pap.pdf
    File Function: Full text
    Download Restriction: no

    File URL: http://dx.doi.org/10.17016/FEDS.2015.074
    File Function: http://dx.doi.org/10.17016/FEDS.2015.074
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. repec:taf:jnlbes:v:34:y:2016:i:4:p:574-589 is not listed on IDEAS
    3. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    4. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    5. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    6. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
    7. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    8. Bura, E. & Yang, J., 2011. "Dimension estimation in sufficient dimension reduction: A unifying approach," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 130-142, January.
    9. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    10. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    11. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    12. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    13. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    14. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    15. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    16. repec:hal:journl:peer-00844811 is not listed on IDEAS
    17. R. Dennis Cook & Bing Li & Francesca Chiaromonte, 2007. "Dimension reduction in regression without matrix inversion," Biometrika, Biometrika Trust, vol. 94(3), pages 569-584.
    18. Cook, R. Dennis & Forzani, Liliana, 2009. "Likelihood-Based Sufficient Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 197-208.
    19. Eaton, Morris L., 1986. "A characterization of spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 20(2), pages 272-276, December.
    20. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    21. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00638009, HAL.
    22. Efstathia Bura & Liliana Forzani, 2015. "Sufficient Reductions in Regressions With Elliptically Contoured Inverse Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 420-434, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ecosta:v:4:y:2017:i:c:p:57-69 is not listed on IDEAS
    2. Alessandro Barbarino & Efstathia Bura, 2017. "A Unified Framework for Dimension Reduction in Forecasting," Finance and Economics Discussion Series 2017-004, Board of Governors of the Federal Reserve System (US).

    More about this item

    Keywords

    Diffusion Index; Dimension Reduction; Factor Models; Forecasting; Partial Least Squares; Principal Components;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2015-74. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ryan Wolfslayer ; Keisha Fournillier). General contact details of provider: http://edirc.repec.org/data/frbgvus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.