IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Nowcasting Czech GDP in Real Time

  • Marek Rusnak

The prominent measure of the current state of the Czech economy, gross domestic product (GDP), is available only with a significant lag of roughly 70 days. In this paper, we employ a Dynamic Factor Model (DFM) to nowcast Czech GDP in real time. Using multiple vintages of historical data and taking into account the publication lags of various monthly indicators, we evaluate the real-time performance of the DFM over the 2005–2012 period. The results suggest that the accuracy of model-based nowcasts is comparable to that of the judgmental nowcasts of the Czech National Bank (CNB). Our results also suggest that foreign variables are crucial for the accuracy of the model, while omitting financial and confidence indicators does not worsen the nowcasting performance. Finally, we show how releases of new data can be viewed through the lens of the dynamic factor model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cnb.cz/en/research/research_publications/cnb_wp/download/cnbwp_2013_06.pdf
Download Restriction: no

Paper provided by Czech National Bank, Research Department in its series Working Papers with number 2013/06.

as
in new window

Length:
Date of creation: Jul 2013
Date of revision:
Handle: RePEc:cnb:wpaper:2013/06
Contact details of provider: Postal:
Na Prikope 28, 115 03 Prague 1

Phone: 00420 2 2442 1111
Fax: 00420 2 2421 8522
Web page: http://www.cnb.cz/en/research/research_intro/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
  2. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  3. Lucrezia Reichlin & Domenico Giannone & Luca Sala, . "Monetary policy in real time," ULB Institutional Repository 2013/10177, ULB -- Universite Libre de Bruxelles.
    • Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
  4. Todd E. Clark & Michael W. McCracken, 2007. "Averaging forecasts from VARs with uncertain instabilities," Finance and Economics Discussion Series 2007-42, Board of Governors of the Federal Reserve System (U.S.).
  5. Thomas J. Jordan & Peter Kugler & Carlos Lenz & Marcel R. Savioz, 2005. "GDP Data Revisions and Forward-Looking Monetary Policy in Switzerland," Working papers 2005/05, Faculty of Business and Economics - University of Basel.
  6. Tom Stark and Dean Croushore, 2001. "Forecasting with a Real-Time Data Set for Macroeconomists," Computing in Economics and Finance 2001 258, Society for Computational Economics.
  7. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-casting and the real-time data flow," Working Paper Series 1564, European Central Bank.
  8. Aruoba, Boragan, 2005. "Data Revisions Are Not Well-Behaved," CEPR Discussion Papers 5271, C.E.P.R. Discussion Papers.
  9. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A quasi maximum likelihood approach for large approximate dynamic factor models," Working Paper Series 0674, European Central Bank.
  10. Shaun Vahey & Tony Garratt, 2005. "UK Real-time Macro Data Characteristics," Computing in Economics and Finance 2005 253, Society for Computational Economics.
  11. Athanasios Orphanides & Simon van Norden, 1999. "The Reliability of Output Gap Estimates in Real Time," Macroeconomics 9907006, EconWPA.
  12. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  13. Camacho, Maximo & Pérez-Quirós, Gabriel, 2009. "Introducing the Euro-STING: Short-Term Indicator of Euro Area Growth," CEPR Discussion Papers 7343, C.E.P.R. Discussion Papers.
  14. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  15. Tomáš Havránek & Roman Horváth & Jakub Matějů, 2012. "Monetary transmission and the financial sector in the Czech Republic," Economic Change and Restructuring, Springer, vol. 45(3), pages 135-155, August.
  16. Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-08, May.
  17. Molodtsova, Tanya & Nikolsko-Rzhevskyy, Alex & Papell, David H., 2008. "Taylor rules with real-time data: A tale of two countries and one exchange rate," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages S63-S79, October.
  18. D'Agostino, Antonello & Giannone, Domenico, 2007. "Comparing Alternative Predictors Based on Large-Panel Factor Models," CEPR Discussion Papers 6564, C.E.P.R. Discussion Papers.
  19. Kirdan Lees & Troy Matheson & Christie Smith, 2007. "Open Economy Dsge-Var Forecasting And Policy Analysis: Head To Head With The Rbnz Published Forecasts," CAMA Working Papers 2007-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  20. Massimiliano Marcellino & Alberto Musso, 2010. "the Reliability of Real Time Estimates of the EURO Area Output Gap," Economics Working Papers ECO2010/06, European University Institute.
  21. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-19, June.
  22. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
  23. Matthew S. Yiu & Kenneth K. Chow, 2011. "Nowcasting Chinese GDP: Information Content of Economic and Financial Data," Working Papers 042011, Hong Kong Institute for Monetary Research.
  24. Kajal Lahiri & George Monokroussos & Yongchen Zhao, 2015. "Forecasting Consumption: The Role of Consumer Confidence in Real Time with many Predictors," Working Papers 2015-02, Towson University, Department of Economics, revised Jul 2015.
  25. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
  26. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
  27. Chris McDonald & Leif Anders Thorsrud, 2011. "Evaluating density forecasts: model combination strategies versus the RBNZ," Reserve Bank of New Zealand Discussion Paper Series DP2011/03, Reserve Bank of New Zealand.
  28. Ashley, Richard, 2003. "Statistically significant forecasting improvements: how much out-of-sample data is likely necessary?," International Journal of Forecasting, Elsevier, vol. 19(2), pages 229-239.
  29. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
  30. Matheson, Troy D., 2010. "An analysis of the informational content of New Zealand data releases: The importance of business opinion surveys," Economic Modelling, Elsevier, vol. 27(1), pages 304-314, January.
  31. repec:ecb:ecbwps:20111428 is not listed on IDEAS
  32. Banbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
  33. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  34. Martin D.D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macro Economy," NBER Working Papers 11064, National Bureau of Economic Research, Inc.
  35. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2013. "Pooling Versus Model Selection For Nowcasting Gdp With Many Predictors: Empirical Evidence For Six Industrialized Countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 392-411, 04.
  36. Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Does forecast combination improve Norges Bank inflation forecasts?," Working Paper 2009/01, Norges Bank.
  37. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  38. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  39. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
  40. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  41. Mario Forni & Lucrezia Reichlin, 1998. "Let's get real: a factor analytical approach to disaggregated business cycle dynamics," ULB Institutional Repository 2013/10147, ULB -- Universite Libre de Bruxelles.
  42. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Paper 1227, Federal Reserve Bank of Cleveland.
  43. Vojtech Benda & Lubos Ruzicka, 2007. "Short-term Forecasting Methods Based on the LEI Approach: The Case of the Czech Republic," Research and Policy Notes 2007/01, Czech National Bank, Research Department.
  44. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
  45. Elena Angelini & Marta Banbura & Gerhard Rünstler, 2010. "Estimating and forecasting the euro area monthly national accounts from a dynamic factor model," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(1), pages 1-22.
  46. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
  47. Frank Schorfheide & Dongho Song, 2013. "Real-Time Forecasting with a Mixed-Frequency VAR," NBER Working Papers 19712, National Bureau of Economic Research, Inc.
  48. Adriana Fernandez & Evan F. Koenig & Alex Nikolsko-Rzhevskyy, 2011. "A real-time historical database for the OECD," Globalization and Monetary Policy Institute Working Paper 96, Federal Reserve Bank of Dallas.
  49. Chamberlain, Gary & Rothschild, Michael, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Scholarly Articles 3230355, Harvard University Department of Economics.
  50. Marek RUSNAK, 2013. "Revisions to the Czech National Accounts: Properties and Predictability," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(3), pages 244-261, July.
  51. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
  52. Roman Horvath, 2012. "Do Confidence Indicators Help Predict Economic Activity? The Case of the Czech Republic," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(5), pages 398-412, November.
  53. Athanasios Orphanides, 1998. "Monetary policy rules based on real-time data," Finance and Economics Discussion Series 1998-03, Board of Governors of the Federal Reserve System (U.S.).
  54. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
  55. Liu, Philip & Matheson, Troy & Romeu, Rafael, 2012. "Real-time forecasts of economic activity for Latin American economies," Economic Modelling, Elsevier, vol. 29(4), pages 1090-1098.
  56. Adolfson, Malin & Andersson, Michael K. & Lindé, Jesper & Villani, Mattias & Vredin, Anders, 2005. "Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks," Working Paper Series 188, Sveriges Riksbank (Central Bank of Sweden), revised 01 Jun 2006.
  57. Marcellino, Massimiliano & Porqueddu, Mario & Venditti, Fabrizio, 2013. "Short-term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility," CEPR Discussion Papers 9334, C.E.P.R. Discussion Papers.
  58. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
  59. repec:hal:journl:peer-00844811 is not listed on IDEAS
  60. Lahiri, Kajal & Monokroussos, George, 2013. "Nowcasting US GDP: The role of ISM business surveys," International Journal of Forecasting, Elsevier, vol. 29(4), pages 644-658.
  61. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
  62. Rochelle M. Edge & Michael T. Kiley & Jean-Philippe Laforte, 2008. "A Comparison Of Forecast Performance Between Federal Reserve Staff Forecasts, Simple Reduced-Form Models, And A Dsge Model," CAMA Working Papers 2009-03, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  63. Ince, Onur & Papell, David H., 2013. "The (un)reliability of real-time output gap estimates with revised data," Economic Modelling, Elsevier, vol. 33(C), pages 713-721.
  64. Faust, Jon & Rogers, John H. & H. Wright, Jonathan, 2003. "Exchange rate forecasting: the errors we've really made," Journal of International Economics, Elsevier, vol. 60(1), pages 35-59, May.
  65. Groen, Jan J.J. & Kapetanios, George & Price, Simon, 2009. "A real time evaluation of Bank of England forecasts of inflation and growth," International Journal of Forecasting, Elsevier, vol. 25(1), pages 74-80.
  66. Alvarez, Rocio & Camacho, Maximo & Pérez-Quirós, Gabriel, 2012. "Finite sample performance of small versus large scale dynamic factor models," CEPR Discussion Papers 8867, C.E.P.R. Discussion Papers.
  67. Dean Croushore, 2008. "Frontiers of real-time data analysis," Working Papers 08-4, Federal Reserve Bank of Philadelphia.
  68. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  69. Tatevik Sekhposyan & Barbara Rossi, 2008. "Has modelsí forecasting performance for US output growth and inflation changed over time, and when?," Working Papers 09-02, Duke University, Department of Economics.
  70. Michal Andrle & Tibor Hledik & Ondra Kamenik & Jan Vlcek, 2009. "Implementing the New Structural Model of the Czech National Bank," Working Papers 2009/2, Czech National Bank, Research Department.
  71. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
  72. Dias, Francisco & Pinheiro, Maximiano & Rua, António, 2015. "Forecasting Portuguese GDP with factor models: Pre- and post-crisis evidence," Economic Modelling, Elsevier, vol. 44(C), pages 266-272.
  73. John C. Robertson & Ellis W. Tallman, 1998. "Data vintages and measuring forecast model performance," Economic Review, Federal Reserve Bank of Atlanta, issue Q 4, pages 4-20.
  74. Frantisek Brazdik & Jan Bruha & Michal Franta & David Havrlant & Tibor Hledik & Tomas Holub & Zuzana Humplova & Frantisek Kopriva & Jiri Polansky & Marek Rusnak & Jaromir Tonner, 2015. "Forecasting," Occasional Publications - Edited Volumes, Czech National Bank, Research Department, edition 1, volume 13, number rb13/1 edited by Jan Babecky & Kamil Galuscak.
  75. Bańbura, Marta & Modugno, Michele, 2010. "Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data," Working Paper Series 1189, European Central Bank.
  76. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  77. Godbout, Claudia & Lombardi, Marco J., 2012. "Short-term forecasting of the Japanese economy using factor models," Working Paper Series 1428, European Central Bank.
  78. Christopher A. Sims, 2002. "The Role of Models and Probabilities in the Monetary Policy Process," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 33(2), pages 1-62.
  79. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
  80. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
  81. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
  82. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  83. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
  84. Knut Are Aastveit & Tørres G. Trovik, 2008. "Nowcasting Norwegian GDP: The role of asset prices in a small open economy," Working Paper 2007/09, Norges Bank.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cnb:wpaper:2013/06. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jan Babecky)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.