IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Does Forecast Combination Improve Norges Bank Inflation Forecasts?

  • Hilde C. Bjørnland
  • Karsten Gerdrup
  • Anne Sofie Jore
  • Christie Smith
  • Leif Anders Thorsrud

We develop a system that provides model-based forecasts for inflation in Norway. We recursively evaluate quasi out-of-sample forecasts from a large suite of models from 1999 to 2009. The performance of the models are then used to derive quasi real time weights that are used to combine the forecasts. Our results indicate that a combination forecast improves upon the point forecasts from individual models. Furthermore, a combination forecast out-performs Norges Bank?s own point forecast for inflation. The beneficial results are obtained using a trimmed weighted average. Some degree of trimming is required for the combination forecasts to out-perform the judgmental forecasts from the policymaker.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Department of Economics, University of Oxford in its journal Oxford Bulletin of Economics and Statistics.

Volume (Year): 74 (2012)
Issue (Month): 2 (04)
Pages: 163-179

in new window

Handle: RePEc:bla:obuest:v:74:y:2012:i:2:p:163-179
Contact details of provider: Postal: Manor Rd. Building, Oxford, OX1 3UQ
Web page:

More information through EDIRC

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
  2. Troy Matheson, 2005. "Factor model forecasts for New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2005/01, Reserve Bank of New Zealand.
  3. Todd E. Clark & Michael W. McCracken, 2007. "Averaging forecasts from VARs with uncertain instabilities," Finance and Economics Discussion Series 2007-42, Board of Governors of the Federal Reserve System (U.S.).
  4. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  5. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecasting Using Bayesian and Information-Theoretic Model Averaging: An Application to U.K. Inflation," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 33-41, January.
  6. Julia Campos & Neil R. Ericsson (ed.), 2005. "General-to-Specific Modelling," Books, Edward Elgar, volume 0, number 2417, April.
  7. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
  8. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, 06.
  9. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
  10. Knut Are Aastveit & Tørres G. Trovik, 2008. "Nowcasting Norwegian GDP: The role of asset prices in a small open economy," Working Paper 2007/09, Norges Bank.
  11. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
  12. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
  13. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
  14. George Kapetanios & Vincent Labhard & Simon Price, 2007. "Forecast combination and the Bank of England’s suite of statistical forecasting models," Bank of England working papers 323, Bank of England.
  15. Christina D. Romer & David H. Romer, 2008. "The FOMC versus the Staff: Where Can Monetary Policymakers Add Value?," NBER Working Papers 13751, National Bureau of Economic Research, Inc.
  16. Andersson, Michael K & Karlsson, Sune, 2007. "Bayesian forecast combination for VAR models," Working Paper Series 216, Sveriges Riksbank (Central Bank of Sweden).
  17. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  18. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
  19. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
  20. Don Coletti & Stephen Murchison, 2002. "Models in Policy-Making," Bank of Canada Review, Bank of Canada, vol. 2002(Spring), pages 19-26.
  21. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
  22. Ashley, Richard, 2003. "Statistically significant forecasting improvements: how much out-of-sample data is likely necessary?," International Journal of Forecasting, Elsevier, vol. 19(2), pages 229-239.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:74:y:2012:i:2:p:163-179. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.