IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area

  • Kuzin, Vladimir
  • Marcellino, Massimiliano
  • Schumacher, Christian

This paper compares the mixed-data sampling (MIDAS) and mixed-frequency VAR (MF-VAR) approaches to model specification in the presence of mixed-frequency data, e.g. monthly and quarterly series. MIDAS leads to parsimonious models which are based on exponential lag polynomials for the coefficients, whereas MF-VAR does not restrict the dynamics and can therefore suffer from the curse of dimensionality. However, if the restrictions imposed by MIDAS are too stringent, the MF-VAR can perform better. Hence, it is difficult to rank MIDAS and MF-VAR a priori, and their relative rankings are better evaluated empirically. In this paper, we compare their performances in a case which is relevant for policy making, namely nowcasting and forecasting quarterly GDP growth in the euro area on a monthly basis, using a set of about 20 monthly indicators. It turns out that the two approaches are more complements than substitutes, since MIDAS tends to perform better for horizons up to four to five months, whereas MF-VAR performs better for longer horizons, up to nine months.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V92-501CFY8-2/2/5eb95b70b59349f7b6884899a7c82a42
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 27 (2011)
Issue (Month): 2 (April)
Pages: 529-542

as
in new window

Handle: RePEc:eee:intfor:v:27:y::i:2:p:529-542
Contact details of provider: Web page: http://www.elsevier.com/locate/ijforecast

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro-area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
  2. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
  3. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
  4. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  5. Stefan Mittnik & Peter A. Zadrozny, 2004. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data," CESifo Working Paper Series 1203, CESifo Group Munich.
  6. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
  7. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "Pooling versus model selection for nowcasting with many predictors: an application to German GDP," Discussion Paper Series 1: Economic Studies 2009,03, Deutsche Bundesbank, Research Centre.
  8. Massimiliano Marcellino & James Stock & Mark Watson, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," Working Papers 285, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  9. David Hendry & Guillaume Chevillon, 2004. "Non-Parametric Direct Multi-step Estimation for Forecasting Economic Processes," Economics Series Working Papers 196, University of Oxford, Department of Economics.
  10. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
  11. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, School of Economics and Management, University of Aarhus.
  12. Wohlrabe, Klaus, 2009. "Forecasting with mixed-frequency time series models," Munich Dissertations in Economics 9681, University of Munich, Department of Economics.
  13. Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
  14. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
  15. Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
  16. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  17. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank, Research Centre.
  18. Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, 02.
  19. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  20. Marcellino, Massimiliano & Musso, Alberto, 2010. "Real time estimates of the euro area output gap: reliability and forecasting performance," Working Paper Series 1157, European Central Bank.
  21. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
  22. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
  23. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
  24. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:2:p:529-542. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.