IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Forecast Combination With Entry and Exit of Experts

  • Capistrán, Carlos
  • Timmermann, Allan

Combination of forecasts from survey data is complicated by the frequent entry and exit of individual forecasters which renders conventional least squares regression approaches infeasible. We explore the consequences of this issue for existing combination methods and propose new methods for bias-adjusting the equal-weighted forecast or applying combinations on an extended panel constructed by back-filling missing observations using an EM algorithm. Through simulations and an application to a range of macroeconomic variables we show that the entry and exit of forecasters can have a large effect on the real-time performance of conventional combination methods. The bias-adjusted combination method is found to work well in practice.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by American Statistical Association in its journal Journal of Business and Economic Statistics.

Volume (Year): 27 (2009)
Issue (Month): 4 ()
Pages: 428-440

in new window

Handle: RePEc:bes:jnlbes:v:27:i:4:y:2009:p:428-440
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
  2. Harrison Hong & Jeffrey D. Kubik, 2003. "Analyzing the Analysts: Career Concerns and Biased Earnings Forecasts," Journal of Finance, American Finance Association, vol. 58(1), pages 313-351, 02.
  3. Pesaran, M.H. & Timmermann, A., 2004. "‘Real Time Econometrics’," Cambridge Working Papers in Economics 0432, Faculty of Economics, University of Cambridge.
  4. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, 03.
  5. Sunil Gupta & Peter C. Wilton, 1987. "Combination of Forecasts: An Extension," Management Science, INFORMS, vol. 33(3), pages 356-372, March.
  6. Richard Clarida & Jordi Gali & Mark Gertler, 1998. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," NBER Working Papers 6442, National Bureau of Economic Research, Inc.
  7. Meese, R. & Rogoff, K., 1988. "Was It Real? The Exchange Rate-Interest Differential Ralation Over The Modern Floating-Rate Period," Working papers 368, Wisconsin Madison - Social Systems.
  8. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
  9. Norman R. Swanson & Jeffery D. Amato, 2000. "The real-time predictive content of money for output," BIS Working Papers 96, Bank for International Settlements.
  10. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
  11. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  12. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  13. Valentina Corradi & Andres Fernandez & Norman R. Swanson, 2008. "Information in the revision process of real-time datasets," Working Papers 08-27, Federal Reserve Bank of Philadelphia.
  14. Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
  15. Tom Stark and Dean Croushore, 2001. "Forecasting with a Real-Time Data Set for Macroeconomists," Computing in Economics and Finance 2001 258, Society for Computational Economics.
  16. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
  17. Zarnowitz, Victor, 1985. "Rational Expectations and Macroeconomic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(4), pages 293-311, October.
  18. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  19. Jacobson, Tor & Karlsson, Sune, 2002. "Finding Good Predictors for Inflation: A Bayesian Model Averaging Approach," Working Paper Series 138, Sveriges Riksbank (Central Bank of Sweden).
  20. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
  21. Swanson, Norman R & Zeng, Tian, 2001. "Choosing among Competing Econometric Forecasts: Regression-Based Forecast Combination Using Model Selection," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 425-40, September.
  22. Gupta, Sunil & Wilton, Peter C, 1988. "Combination of Economic Forecasts: An Odds-Matrix Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 373-79, July.
  23. Heejoon Kang, 1986. "Unstable Weights in the Combination of Forecasts," Management Science, INFORMS, vol. 32(6), pages 683-695, June.
  24. Kajal Lahiri & Antony Davies & Xuguang Sheng, 2010. "Analyzing Three-Dimensional Panel Data of Forecasts," Discussion Papers 10-07, University at Albany, SUNY, Department of Economics.
  25. Inoue, Atsushi & Kilian, Lutz, 2005. "How Useful is Bagging in Forecasting Economic Time Series? A Case Study of US CPI Inflation," CEPR Discussion Papers 5304, C.E.P.R. Discussion Papers.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:27:i:4:y:2009:p:428-440. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.