IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study

Listed author(s):
  • Henzel, Steffen R.
  • Mayr, Johannes

This paper analyzes the mechanics of VAR forecast pooling and quantifies the forecast performance under varying conditions. To fill the gap between empirical and purely theoretical research we run a Monte Carlo study and simulate the data from different New Keynesian DSGE models. We find that equally pooling VAR forecasts outperforms single predictions in general and that the gains are substantial for sample sizes relevant in practice. In contrast, the estimation of theoretically optimal weights or model selection is advisable only for very large data sets hardly available in practice. Notably, equally pooling forecasts from small-scale VARs can even dominate forecasts from large VARs including all relevant variables. Given our results, we advocate the use of equally pooled predictions from parsimonious VARs as an easy to implement and competitive forecast approach.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S1062940812000381
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal The North American Journal of Economics and Finance.

Volume (Year): 24 (2013)
Issue (Month): C ()
Pages: 1-24

as
in new window

Handle: RePEc:eee:ecofin:v:24:y:2013:i:c:p:1-24
DOI: 10.1016/j.najef.2012.03.009
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/620163

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
  2. Ricardo Mestre & Peter McAdam, 2011. "Is forecasting with large models informative? Assessing the role of judgement in macroeconomic forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 303-324, April.
  3. Raf Wouters & Frank Smets, 2005. "Comparing shocks and frictions in US and euro area business cycles: a Bayesian DSGE Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 161-183.
  4. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  5. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
  6. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
  7. Volker Wieland & Maik Wolters, 2011. "The diversity of forecasts from macroeconomic models of the US economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 247-292, June.
  8. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, 05.
  9. Carlo A. Favero & Massimiliano Marcellino, 2005. "Modelling and Forecasting Fiscal Variables for the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 755-783, December.
  10. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
  11. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
  12. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
  13. Rochelle M. Edge & Michael T. Kiley & Jean-Philippe Laforte, 2007. "Documentation of the Research and Statistics Division’s estimated DSGE model of the U.S. economy: 2006 version," Finance and Economics Discussion Series 2007-53, Board of Governors of the Federal Reserve System (U.S.).
  14. Erceg, Christopher J. & Henderson, Dale W. & Levin, Andrew T., 2000. "Optimal monetary policy with staggered wage and price contracts," Journal of Monetary Economics, Elsevier, vol. 46(2), pages 281-313, October.
  15. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
  16. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2008. "The new area-wide model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 944, European Central Bank.
  17. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  18. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
  19. Diebold, Francis X., 1989. "Forecast combination and encompassing: Reconciling two divergent literatures," International Journal of Forecasting, Elsevier, vol. 5(4), pages 589-592.
  20. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  21. Rabanal, Pau & Rubio-Ramirez, Juan F., 2005. "Comparing New Keynesian models of the business cycle: A Bayesian approach," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1151-1166, September.
  22. Bloor, Chris & Matheson, Troy, 2011. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 26-42, January.
  23. Wolters, Maik H., 2011. "Forecasting under Model Uncertainty," Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48723, Verein für Socialpolitik / German Economic Association.
  24. Stephen Murchison & Andrew Rennison, 2006. "ToTEM: The Bank of Canada's New Quarterly Projection Model," Technical Reports 97, Bank of Canada.
  25. Gelain, Paolo, 2010. "The external finance premium in the Euro area: A dynamic stochastic general equilibrium analysis," The North American Journal of Economics and Finance, Elsevier, vol. 21(1), pages 49-71, March.
  26. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  27. John F. Henry & L. Randall Wray, 1998. "Economic Time," Macroeconomics 9811004, EconWPA.
  28. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
  29. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, 06.
  30. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
  31. Rumler, Fabio & Valderrama, Maria Teresa, 2010. "Comparing the New Keynesian Phillips Curve with time series models to forecast inflation," The North American Journal of Economics and Finance, Elsevier, vol. 21(2), pages 126-144, August.
  32. Roy Batchelor & Pami Dua, 1995. "Forecaster Diversity and the Benefits of Combining Forecasts," Management Science, INFORMS, vol. 41(1), pages 68-75, January.
  33. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
  34. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
  35. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
  36. Rochelle M. Edge & Michael T. Kiley & Jean-Philippe Laforte, 2010. "A comparison of forecast performance between Federal Reserve staff forecasts, simple reduced-form models, and a DSGE model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 720-754.
  37. Jeffrey C. Fuhrer, 2000. "Habit Formation in Consumption and Its Implications for Monetary-Policy Models," American Economic Review, American Economic Association, vol. 90(3), pages 367-390, June.
  38. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  39. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  40. Fagan, Gabriel & Henry, Jerome & Mestre, Ricardo, 2005. "An area-wide model for the euro area," Economic Modelling, Elsevier, vol. 22(1), pages 39-59, January.
  41. Smets, Frank & Wouters, Raf, 2007. "Shocks and frictions in US business cycles: a Bayesian DSGE approach," Working Paper Series 722, European Central Bank.
  42. Christoffel, Kai & Coenen, Günter & Warne, Anders, 2008. "The New Area-Wide Model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 0944, European Central Bank.
  43. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, 05.
  44. Massimiliano Marcellino, 2004. "Forecast Pooling for European Macroeconomic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(1), pages 91-112, 02.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:24:y:2013:i:c:p:1-24. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.