IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Should macroeconomic forecasters use daily financial data and how?

  • Elena Andreou
  • Eric Ghysels
  • Andros Kourtellos

We introduce easy to implement regression-based methods for predicting quarterly real economic activity that use daily financial data and rely on forecast combinations of MIDAS regressions. Our analysis is designed to elucidate the value of daily information and provide real-time forecast updates of the current (nowcasting) and future quarters. Our findings show that while on average the predictive ability of all models worsens substantially following the financial crisis, the models we propose suffer relatively less losses than the traditional ones. Moreover, these predictive gains are primarily driven by the classes of government securities, equities, and especially corporate risk.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://papers.econ.ucy.ac.cy/RePEc/papers/09-10.pdf
Download Restriction: no

Paper provided by University of Cyprus Department of Economics in its series University of Cyprus Working Papers in Economics with number 09-2010.

as
in new window

Length: 67 pages
Date of creation: Nov 2010
Date of revision:
Handle: RePEc:ucy:cypeua:09-2010
Contact details of provider: Web page: http://www.econ.ucy.ac.cy

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. M Sensier & D van Dijk, 2003. "Testing for Volatility Changes in US Macroeconomic Time Series," Centre for Growth and Business Cycle Research Discussion Paper Series 36, Economics, The Univeristy of Manchester.
  2. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
  3. Antonello D'Agostino & Domenico Giannone & Paolo Surico, 2005. "(Un)Predictability and Macroeconomic Stability," Macroeconomics 0510024, EconWPA.
  4. Avramov, Doron, 2002. "Stock return predictability and model uncertainty," Journal of Financial Economics, Elsevier, vol. 64(3), pages 423-458, June.
  5. Leon, Angel & Nave, Juan M. & Rubio, Gonzalo, 2007. "The relationship between risk and expected return in Europe," Journal of Banking & Finance, Elsevier, vol. 31(2), pages 495-512, February.
  6. Sydney Ludvigson & Serena Ng, 2006. "The Empirical Risk-Return Relation: a factor analysis approach," 2006 Meeting Papers 236, Society for Economic Dynamics.
  7. Libero Monteforte & Gianluca Moretti, 2013. "Real‐Time Forecasts of Inflation: The Role of Financial Variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 51-61, 01.
  8. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank, Research Centre.
  9. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2009. "Macroeconomic Forecasting and Structural Change," Working Papers ECARES 2009_020, ULB -- Universite Libre de Bruxelles.
  10. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2007. "A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering," CEPR Discussion Papers 6043, C.E.P.R. Discussion Papers.
  11. Christopher A. Sims, 1980. "Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered," NBER Working Papers 0430, National Bureau of Economic Research, Inc.
  12. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
  13. Frank Schorfheide & Dongho Song, 2013. "Real-Time Forecasting with a Mixed-Frequency VAR," NBER Working Papers 19712, National Bureau of Economic Research, Inc.
  14. Banbura, Marta & Rünstler, Gerhard, 2007. "A look into the factor model black box: publication lags and the role of hard and soft data in forecasting GDP," Working Paper Series 0751, European Central Bank.
  15. Charles Engel & Kenneth D. West, 2003. "Exchange rates and fundamentals," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  16. Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
  17. Yu-chin Chen & Kenneth Rogoff & Barbara Rossi, 2008. "Can Exchange Rates Forecast Commodity Prices?," Working Papers UWEC-2008-11-FC, University of Washington, Department of Economics, revised Oct 2009.
  18. Guillaume Chevillon & David F. Hendry, 2004. "Non-Parametric Direct Multi-step Estimation for Forecasting Economic Processes," Economics Papers 2004-W12, Economics Group, Nuffield College, University of Oxford.
  19. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-59, April.
  20. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
  21. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
  22. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
  23. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  24. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
  25. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
  26. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  27. Wasserfallen, Walter, 1989. "Macroeconomics news and the stock market: Evidence from Europe," Journal of Banking & Finance, Elsevier, vol. 13(4-5), pages 613-626, September.
  28. Clark, Todd E. & McCracken, Michael W., 2005. "The power of tests of predictive ability in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 124(1), pages 1-31, January.
  29. Peter A. Zadrozny, 1990. "Forecasting U.S. GNP at monthly intervals with an estimated bivariate time series model," Economic Review, Federal Reserve Bank of Atlanta, issue Nov, pages 2-15.
  30. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-76, June.
  31. Emanuel Moench & Serena Ng & Simon Potter, 2009. "Dynamic hierarchical factor models," Staff Reports 412, Federal Reserve Bank of New York.
  32. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
  33. Michelle T. Armesto & Rubén Hernández-Murillo & Michael T. Owyang & Jeremy Piger, 2009. "Measuring the Information Content of the Beige Book: A Mixed Data Sampling Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(1), pages 35-55, 02.
  34. Robert D. Laurent, 1988. "An interest rate-based indicator of monetary policy," Economic Perspectives, Federal Reserve Bank of Chicago, issue Jan, pages 3-14.
  35. Hamilton, James Douglas & Kim, Dong Heon, 2000. "A Re-examination of the Predictability of Economic Activity Using the Yield Spread," University of California at San Diego, Economics Working Paper Series qt69v8p1m9, Department of Economics, UC San Diego.
  36. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  37. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
  38. David Hendry & Michael Clements, 2001. "Pooling of Forecasts," Economics Series Working Papers 2002-W09, University of Oxford, Department of Economics.
  39. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  40. Rossi, Barbara & Giacomini, Raffaella, 2006. "Detecting and Predicting Forecast Breakdowns," Working Papers 06-01, Duke University, Department of Economics.
  41. Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
  42. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
  43. Friedman, Benjamin M & Kuttner, Kenneth N, 1992. "Money, Income, Prices, and Interest Rates," American Economic Review, American Economic Association, vol. 82(3), pages 472-92, June.
  44. Ben Bernanke, 1990. "The Federal Funds Rate and the Channels of Monetary Transnission," NBER Working Papers 3487, National Bureau of Economic Research, Inc.
  45. Gilchrist, Simon & Yankov, Vladimir & Zakrajsek, Egon, 2009. "Credit market shocks and economic fluctuations: Evidence from corporate bond and stock markets," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 471-493, May.
  46. Andrew Atkeson & Lee E. Ohanian., 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
  47. Robert J. Barro, 1989. "The Stock Market and Investment," NBER Working Papers 2925, National Bureau of Economic Research, Inc.
  48. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
  49. Stefan Mittnik & Peter A. Zadrozny, 2004. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data," CESifo Working Paper Series 1203, CESifo Group Munich.
  50. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
  51. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  52. Refet S. Gürkaynak & Brian Sack & Jonathan H. Wright, 2008. "The TIPS yield curve and inflation compensation," Finance and Economics Discussion Series 2008-05, Board of Governors of the Federal Reserve System (U.S.).
  53. Harvey, Campbell R., 1988. "The real term structure and consumption growth," Journal of Financial Economics, Elsevier, vol. 22(2), pages 305-333, December.
  54. Anthony Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Working Papers 14-2007, Singapore Management University, School of Economics.
  55. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  56. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ucy:cypeua:09-2010. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.