IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v193y2016i2p294-314.html
   My bibliography  Save this article

Macroeconomics and the reality of mixed frequency data

Author

Listed:
  • Ghysels, Eric

Abstract

Many time series are sampled at different frequencies. When we study co-movements between such series we usually analyze the joint process sampled at a common low frequency. This has consequences in terms of potentially mis-specifying the co-movements and hence the analysis of impulse response functions—a commonly used tool for economic policy analysis. We introduce a class of mixed frequency VAR models that allows us to measure the impact of high frequency data on low frequency and vice versa. Our approach does not rely on latent processes/shocks representations. As a consequence, the mixed frequency VAR is an alternative to commonly used state space models for mixed frequency data. State space models are parameter-driven whereas mixed frequency VAR models are observation-driven models as they are formulated exclusively in terms of observable data and do not involve latent processes as well as shocks and thus avoid the need to formulate measurement equations, filtering, etc. We also propose various parsimonious parameterizations, in part inspired by recent work on MIDAS regressions. We also explicitly characterize the mis-specification of a traditional common low frequency VAR and its implied mis-specified impulse response functions. The class of mixed frequency VAR models can also characterize the timing of information releases for a mixture of sampling frequencies and the real-time updating of predictions caused by the flow of high frequency information. Various estimation procedures for mixed frequency VAR models are also proposed, both classical and Bayesian. Numerical and empirical examples quantify the consequences of ignoring mixed frequency data.

Suggested Citation

  • Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
  • Handle: RePEc:eee:econom:v:193:y:2016:i:2:p:294-314
    DOI: 10.1016/j.jeconom.2016.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407616300653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2016.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Rodriguez, Abel & Puggioni, Gavino, 2010. "Mixed frequency models: Bayesian approaches to estimation and prediction," International Journal of Forecasting, Elsevier, vol. 26(2), pages 293-311, April.
    3. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    4. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    5. Eric Ghysels & Jonathan H. Wright, 2006. "Forecasting professional forecasters," Finance and Economics Discussion Series 2006-10, Board of Governors of the Federal Reserve System (U.S.).
    6. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    7. Peter A. Zadrozny, 1990. "Forecasting U.S. GNP at monthly intervals with an estimated bivariate time series model," Economic Review, Federal Reserve Bank of Atlanta, issue Nov, pages 2-15.
    8. McCrorie, J. Roderick & Chambers, Marcus J., 2006. "Granger causality and the sampling of economic processes," Journal of Econometrics, Elsevier, vol. 132(2), pages 311-336, June.
    9. Ghysels, Eric, 1994. "On the Periodic Structure of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 289-298, July.
    10. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    11. Luis C. Nunes, 2005. "Nowcasting quarterly GDP growth in a monthly coincident indicator model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 575-592.
    12. Renault, Eric & Sekkat, Khalid & Szafarz, Ariane, 1998. "Testing for spurious causality in exchange rates," Journal of Empirical Finance, Elsevier, vol. 5(1), pages 47-66, January.
    13. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    14. Stefan Mittnik & Peter Zadrozny, 2005. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly Ifo Business Conditions Data," Contributions to Economics, in: Jan-Egbert Sturm & Timo Wollmershäuser (ed.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, pages 19-48, Springer.
    15. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
    16. McCallum, Bennett T, 1976. "Rational Expectations and the Estimation of Econometric Models: AnAlternative Procedure," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 484-490, June.
    17. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    18. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    19. Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015. "Bayesian Mixed Frequency VARs," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(3), pages 698-721.
    20. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    21. Hansen, Lars Peter & Sargent, Thomas J., 1993. "Seasonality and approximation errors in rational expectations models," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 21-55.
    22. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    23. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    24. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    25. Claudia Foroni & Massimiliano Marcellino, 2014. "Mixed‐Frequency Structural Models: Identification, Estimation, And Policy Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1118-1144, November.
    26. Pettenuzzo, Davide & Timmermann, Allan G & Valkanov, Rossen, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," CEPR Discussion Papers 10160, C.E.P.R. Discussion Papers.
    27. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    28. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    29. Granger, C. W. J., 1988. "Some recent development in a concept of causality," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 199-211.
    30. Lars Peter Hansen & Thomas J. Sargent, 1993. "Recursive linear models of dynamic economies," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    31. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    32. Jennie Bai & Eric Ghysels & Jonathan H. Wright, 2013. "State Space Models and MIDAS Regressions," Econometric Reviews, Taylor & Francis Journals, vol. 32(7), pages 779-813, October.
    33. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    2. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    3. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    4. Qian, Hang, 2012. "Essays on statistical inference with imperfectly observed data," ISU General Staff Papers 201201010800003618, Iowa State University, Department of Economics.
    5. Marcellino, Massimiliano & Sivec, Vasja, 2016. "Monetary, fiscal and oil shocks: Evidence based on mixed frequency structural FAVARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 335-348.
    6. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    7. Neville Francis, 2012. "The Low-Frequency Impact of Daily Monetary Policy Shock," 2012 Meeting Papers 198, Society for Economic Dynamics.
    8. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018. "Using low frequency information for predicting high frequency variables," International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
    9. Qian, Hang, 2013. "Vector Autoregression with Mixed Frequency Data," MPRA Paper 47856, University Library of Munich, Germany.
    10. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
    11. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    12. Bacchiocchi, Emanuele & Bastianin, Andrea & Missale, Alessandro & Rossi, Eduardo, 2020. "Structural analysis with mixed-frequency data: A model of US capital flows," Economic Modelling, Elsevier, vol. 89(C), pages 427-443.
    13. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    14. Qian, Hang, 2016. "A computationally efficient method for vector autoregression with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 433-437.
    15. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    16. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
    17. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016. "Testing for Granger causality with mixed frequency data," Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
    18. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    19. Qiu, Yue, 2020. "Forecasting the Consumer Confidence Index with tree-based MIDAS regressions," Economic Modelling, Elsevier, vol. 91(C), pages 247-256.
    20. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:193:y:2016:i:2:p:294-314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.