IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v24y2005i8p575-592.html
   My bibliography  Save this article

Nowcasting quarterly GDP growth in a monthly coincident indicator model

Author

Listed:
  • Luis C. Nunes

    (Universidade Nova de Lisboa, Portugal)

Abstract

This paper presents an extension of the Stock and Watson coincident indicator model that allows one to include variables available at different frequencies while taking care of missing observations at any time period. The proposed procedure provides estimates of the unobserved common coincident component, of the unobserved monthly series underlying any included quarterly indicator, and of any missing values in the series. An application to a coincident indicator model for the Portuguese economy is presented. We use monthly indicators from business surveys whose results are published with a very short delay. By using the available data for the monthly indicators and for quarterly real GDP, it becomes possible to produce simultaneously a monthly composite index of coincident indicators and an estimate of the latest quarter real GDP growth well ahead of the release of the first official figures. Copyright © 2005 John Wiley & Son, Ltd.

Suggested Citation

  • Luis C. Nunes, 2005. "Nowcasting quarterly GDP growth in a monthly coincident indicator model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 575-592.
  • Handle: RePEc:jof:jforec:v:24:y:2005:i:8:p:575-592
    DOI: 10.1002/for.969
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.969
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    as
    1. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    2. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    3. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Oller, Lars-Erik & Tallbom, Christer, 1996. "Smooth and timely business cycle indicators for noisy Swedish data," International Journal of Forecasting, Elsevier, vol. 12(3), pages 389-402, September.
    6. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    7. Sarantis, Nicholas, 2001. "Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence," International Journal of Forecasting, Elsevier, vol. 17(3), pages 459-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucia Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon Potter, 2014. "Central Bank Macroeconomic Forecasting During the Global Financial Crisis: The European Central Bank and Federal Reserve Bank of New York Experiences," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 483-500, October.
    2. John Galbraith & Greg Tkacz, 2013. "Nowcasting GDP: Electronic Payments, Data Vintages and the Timing of Data Releases," CIRANO Working Papers 2013s-25, CIRANO.
    3. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    4. Peter Fuleky & Carl Bonham, 2010. "Forecasting Based on Common Trends in Mixed Frequency Samples," Working Papers 2010-17R1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2013.
    5. Kosei Fukuda, 2009. "Related-variables selection in temporal disaggregation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(4), pages 343-357.
    6. John W. Galbraith & Greg Tkacz, 2007. "Electronic Transactions as High-Frequency Indicators of Economic Activity," Staff Working Papers 07-58, Bank of Canada.
    7. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    8. Alvarez, Rocio & Camacho, Maximo & Pérez-Quirós, Gabriel, 2012. "Finite sample performance of small versus large scale dynamic factor models," CEPR Discussion Papers 8867, C.E.P.R. Discussion Papers.
    9. Peter Fuleky & Carl, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 2013-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    10. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    11. Evren Erdogan Cosar & Sevim Kosem & Cagri Sarikaya, 2013. "Do We Really Need Filters In Estimating Output Gap? : Evidence From Turkey," Working Papers 1333, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    12. José Casals & Miguel Jerez & Sonia Sotoca, 2009. "Modelling and forecasting time series sampled at different frequencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(4), pages 316-342.
    13. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
    14. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
    15. Namwon Hyung & Clive W.J. Granger, 2008. "Linking series generated at different frequencies This work is part of a PhD dissertation presented at the University of California, San Diego (1999)," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 95-108.
    16. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    17. Anna Norin, 2011. "Nowcasting of the Gross Regional Product," ERSA conference papers ersa10p768, European Regional Science Association.
    18. Yun-Yeong Kim, 2016. "Dynamic Analyses Using VAR Model with Mixed Frequency Data through Observable Representation," Korean Economic Review, Korean Economic Association, vol. 32, pages 41-75.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:24:y:2005:i:8:p:575-592. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.