IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Leading indicator properties of US high-yield credit spreads

  • Andrea Cipollini

    ()

  • Nektarios Aslanidis

    ()

In this paper we examine the out-of-sample forecast performance of high-yield credit spreads regarding employment and industrial production in the US, using both a point forecast and a probability forecast exercise. Our main findings suggest the use of few factors obtained by pooling information from a number of sector-specific high-yield credit spreads. This can be justified by observing that there is a gain from using a principal components model fitted to high-yield credit spreads compared to the prediction produced by benchmarks, such as an AR, and ARDL models that use either the term spread or the aggregate high-yield spread as exogenous regressor.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.recent.unimore.it/wp/RECent-wp6.pdf
Download Restriction: no

Paper provided by University of Modena and Reggio E., Dept. of Economics "Marco Biagi" in its series Center for Economic Research (RECent) with number 006.

as
in new window

Length: pages 31
Date of creation: Oct 2007
Date of revision:
Handle: RePEc:mod:recent:006
Contact details of provider: Web page: http://www.recent.unimore.it/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Joseph G. Haubrich & Ann M. Dombrosky, 1996. "Predicting real growth using the yield curve," Economic Review, Federal Reserve Bank of Cleveland, issue Q I, pages 26-35.
  2. James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  3. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
  4. Anderson, Heather M. & Vahid, Farshid, 2001. "Predicting The Probability Of A Recession With Nonlinear Autoregressive Leading-Indicator Models," Macroeconomic Dynamics, Cambridge University Press, vol. 5(04), pages 482-505, September.
  5. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  6. Fama, Eugene F, 1981. "Stock Returns, Real Activity, Inflation, and Money," American Economic Review, American Economic Association, vol. 71(4), pages 545-65, September.
  7. Pesaran, M.H. & Timmermann, A., 1990. "A Simple, Non-Parametric Test Of Predictive Performance," Cambridge Working Papers in Economics 9021, Faculty of Economics, University of Cambridge.
  8. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
  9. Benjamin M. Friedman & Kenneth N. Kuttner, 1994. "Indicator properties of the paper-bill spread: lessons from recent experience," Working Paper Series, Macroeconomic Issues 94-24, Federal Reserve Bank of Chicago.
  10. Ana Beatriz C. Galvao, 2006. "Structural break threshold VARs for predicting US recessions using the spread," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 463-487.
  11. Forni M. & Hallin M., 2003. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Computing in Economics and Finance 2003 143, Society for Computational Economics.
  12. Marc Hallin & Mario Forni & Marco Lippi & Lucrezia Reichlin, 2003. "Do financial variables help forecasting inflation and real activity in the Euro area ?," ULB Institutional Repository 2013/2123, ULB -- Universite Libre de Bruxelles.
  13. Tom Stark & Dean Croushore, 2001. "Forecasting with a real-time data set for macroeconomists," Working Papers 01-10, Federal Reserve Bank of Philadelphia.
  14. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
  15. Edwin J. Elton, 2001. "Explaining the Rate Spread on Corporate Bonds," Journal of Finance, American Finance Association, vol. 56(1), pages 247-277, 02.
  16. Stock, J.H. & Watson, M.W., 1989. "New Indexes Of Coincident And Leading Economic Indicators," Papers 178d, Harvard - J.F. Kennedy School of Government.
  17. Mody, Ashoka & Taylor, Mark P., 2004. "Financial predictors of real activity and the financial accelerator," Economics Letters, Elsevier, vol. 82(2), pages 167-172, February.
  18. Ashoka Mody & Mark P. Taylor, 2003. "The High-Yield Spread as a Predictor of Real Economic Activity: Evidence of a Financial Accelerator for the United States," IMF Staff Papers, Palgrave Macmillan, vol. 50(3), pages 3.
  19. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  20. Dean Croushore & Tom Stark, 1999. "A real-time data set for marcoeconomists: does the data vintage matter?," Working Papers 99-21, Federal Reserve Bank of Philadelphia.
  21. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
  22. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-91, July.
  23. Michael Dotsey, 1998. "The predictive content of the interest rate term spread for future economic growth," Economic Quarterly, Federal Reserve Bank of Richmond, issue Sum, pages 31-51.
  24. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  25. George Kapetanios & Massimiliano Marcellino, 2003. "A Comparison of Estimation Methods for Dynamic Factor Models of Large Dimensions," Working Papers 489, Queen Mary University of London, School of Economics and Finance.
  26. Harvey, Campbell R., 1988. "The real term structure and consumption growth," Journal of Financial Economics, Elsevier, vol. 22(2), pages 305-333, December.
  27. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mod:recent:006. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.