IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Leading indicator properties of US high-yield credit spreads

  • Andrea Cipollini

    ()

  • Nektarios Aslanidis

    ()

In this paper we examine the out-of-sample forecast performance of high-yield credit spreads regarding employment and industrial production in the US, using both a point forecast and a probability forecast exercise. Our main findings suggest the use of few factors obtained by pooling information from a number of sector-specific high-yield credit spreads. This can be justified by observing that there is a gain from using a principal components model fitted to high-yield credit spreads compared to the prediction produced by benchmarks, such as an AR, and ARDL models that use either the term spread or the aggregate high-yield spread as exogenous regressor.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.recent.unimore.it/wp/RECent-wp6.pdf
Download Restriction: no

Paper provided by University of Modena and Reggio E., Dept. of Economics "Marco Biagi" in its series Center for Economic Research (RECent) with number 006.

as
in new window

Length: pages 31
Date of creation: Oct 2007
Date of revision:
Handle: RePEc:mod:recent:006
Contact details of provider: Web page: http://www.recent.unimore.it/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Benjamin M. Friedman & Kenneth N. Kuttner, 1998. "Indicator Properties Of The Paper-Bill Spread: Lessons From Recent Experience," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 34-44, February.
  2. Athanasios Orphanides & Simon van Norden, 2001. "The Unreliability of Output Gap Estimates in Real Time," CIRANO Working Papers 2001s-57, CIRANO.
  3. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-65, October.
  4. Joseph G. Haubrich & Ann M. Dombrosky, 1996. "Predicting real growth using the yield curve," Economic Review, Federal Reserve Bank of Cleveland, issue Q I, pages 26-35.
  5. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
  6. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
  8. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
  9. Arturo Estrella & Frederic S. Mishkin, 1995. "Predicting U.S. Recessions: Financial Variables as Leading Indicators," NBER Working Papers 5379, National Bureau of Economic Research, Inc.
  10. Tom Stark and Dean Croushore, 2001. "Forecasting with a Real-Time Data Set for Macroeconomists," Computing in Economics and Finance 2001 258, Society for Computational Economics.
  11. Dean Croushore & Tom Stark, 1999. "A real-time data set for marcoeconomists: does the data vintage matter?," Working Papers 99-21, Federal Reserve Bank of Philadelphia.
  12. Ashoka Mody & Mark P. Taylor, 2003. "The High-Yield Spread as a Predictor of Real Economic Activity: Evidence of a Financial Accelerator for the United States," IMF Staff Papers, Palgrave Macmillan, vol. 50(3), pages 3.
  13. Ana Beatriz C. Galvao, 2006. "Structural break threshold VARs for predicting US recessions using the spread," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 463-487.
  14. Anderson, H.M. & Vahid, F., 2000. "Predicting the Probability of a Recession with Nonlinear Autoregressive Leading Indicator Models," Monash Econometrics and Business Statistics Working Papers 3/00, Monash University, Department of Econometrics and Business Statistics.
  15. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  16. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
  17. Mody, Ashoka & Taylor, Mark P., 2004. "Financial predictors of real activity and the financial accelerator," Economics Letters, Elsevier, vol. 82(2), pages 167-172, February.
  18. James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  19. Michael Dotsey, 1998. "The predictive content of the interest rate term spread for future economic growth," Economic Quarterly, Federal Reserve Bank of Richmond, issue Sum, pages 31-51.
  20. Francis X. Diebold & Glenn D. Rudebusch, 1987. "Scoring the leading indicators," Special Studies Papers 206, Board of Governors of the Federal Reserve System (U.S.).
  21. Harvey, Campbell R., 1988. "The real term structure and consumption growth," Journal of Financial Economics, Elsevier, vol. 22(2), pages 305-333, December.
  22. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
  23. George Kapetanios & Massimiliano Marcellino, 2003. "A Comparison of Estimation Methods for Dynamic Factor Models of Large Dimensions," Working Papers 489, Queen Mary University of London, School of Economics and Finance.
  24. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  25. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  26. Edwin J. Elton, 2001. "Explaining the Rate Spread on Corporate Bonds," Journal of Finance, American Finance Association, vol. 56(1), pages 247-277, 02.
  27. Fama, Eugene F, 1981. "Stock Returns, Real Activity, Inflation, and Money," American Economic Review, American Economic Association, vol. 71(4), pages 545-65, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mod:recent:006. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.