IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Real-time data revisions and the PCE measure of inflation

  • Tierney, Heather L.R.

This paper tracks data revisions in the Personal Consumption Expenditure using the exclusions-from-core inflation persistence model. Keeping the number of observations the same, the regression parameters of earlier vintages of real-time data, beginning with vintage 1996:Q1, are tested for coincidence against the regression parameters of the last vintage of real-time data, used in this paper, which is vintage 2008:Q2 in a parametric and two nonparametric frameworks. The effects of data revisions are not detectable in the vast majority of cases in the parametric model, but the flexibility of the two nonparametric models is able to utilize the data revisions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Economic Modelling.

Volume (Year): 28 (2011)
Issue (Month): 4 (July)
Pages: 1763-1773

in new window

Handle: RePEc:eee:ecmode:v:28:y:2011:i:4:p:1763-1773
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643.
  2. Tierney, Heather L.R., 2009. "Examining the Ability of Core Inflation to Capture the Overall Trend of Total Inflation," MPRA Paper 22409, University Library of Munich, Germany, revised Feb 2010.
  3. Fountas, Stilianos, 2010. "Inflation, inflation uncertainty and growth: Are they related?," Economic Modelling, Elsevier, vol. 27(5), pages 896-899, September.
  4. Tristen Hayfield & Jeffrey S. Racine, . "Nonparametric Econometrics: The np Package," Journal of Statistical Software, American Statistical Association, vol. 27(i05).
  5. Wolfgang HÄRDLE & H. LÜTKEPOHL & R. CHEN, 1996. "A Review of Nonparametric Time Series Analysis," SFB 373 Discussion Papers 1996,48, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  6. A. Robert Nobay & Ivan Paya & David A. Peel, 2007. "Inflation dynamics in the US - a nonlinear perspective," LSE Research Online Documents on Economics 24499, London School of Economics and Political Science, LSE Library.
  7. Fujiwara, Ippei & Koga, Maiko, 2004. "A Statistical Forecasting Method for Inflation Forecasting: Hitting Every Vector Autoregression and Forecasting under Model Uncertainty," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 22(1), pages 123-142, March.
  8. P. M. Robinson, 1998. "Inference-Without-Smoothing in the Presence of Nonparametric Autocorrelation," Econometrica, Econometric Society, vol. 66(5), pages 1163-1182, September.
  9. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
  10. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  11. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
  12. Zongwu Cai & Jianqing Fan & Qiwei Yao, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
  13. Tom Stark & Dean Croushore, 2001. "Forecasting with a real-time data set for macroeconomists," Working Papers 01-10, Federal Reserve Bank of Philadelphia.
  14. Robert Rich & Charles Steindel, 2005. "A review of core inflation and an evaluation of its measures," Staff Reports 236, Federal Reserve Bank of New York.
  15. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  16. Kozicki, Sharon, 2002. "Comments on 'Forecasting with a real-time data set for macroeconomists'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 541-557, December.
  17. Chauvet, Marcelle & Tierney, Heather L. R., 2007. "Real Time Changes in Monetary Policy," MPRA Paper 16199, University Library of Munich, Germany, revised Apr 2009.
  18. Todd E. Clark, 2001. "Comparing measures of core inflation," Economic Review, Federal Reserve Bank of Kansas City, issue Q II, pages 5-31.
  19. Chi-Young Choi, 2010. "Reconsidering the Relationship between Inflation and Relative Price Variability," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(5), pages 769-798, 08.
  20. Dean Croushore, 2008. "Revisions to PCE inflation measures: implications for monetary policy," Working Papers 08-8, Federal Reserve Bank of Philadelphia.
  21. Hardle, W. & Tsybakov, A., 1997. "Local polynomial estimators of the volatility function in nonparametric autoregression," Journal of Econometrics, Elsevier, vol. 81(1), pages 223-242, November.
  22. Marron, J S, 1988. "Automatic Smoothing Parameter Selection: A Survey," Empirical Economics, Springer, vol. 13(3/4), pages 187-208.
  23. Jianqing Fan & Qiwei Yao, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
  24. Lanne , Markku, 2002. "Nonlinear dynamics of interest rate and inflation," Research Discussion Papers 21/2002, Bank of Finland.
  25. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-59, April.
  26. Cogley, Timothy, 2002. "A Simple Adaptive Measure of Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 94-113, February.
  27. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
  28. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
  29. Thérèse Laf;èche & Jamie Armour, 2006. "Evaluating Measures of Core Inflation," Bank of Canada Review, Bank of Canada, vol. 2006(Summer), pages 19-29.
  30. den Butter, Frank A. G. & Morgan, Mary S., 1998. "What makes the models-policy interaction successful?," Economic Modelling, Elsevier, vol. 15(3), pages 443-475, July.
  31. Elliott, Graham, 2002. "Comments on 'Forecasting with a real-time data set for macroeconomists'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 533-539, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:28:y:2011:i:4:p:1763-1773. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.