IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/17856.html
   My bibliography  Save this paper

Evaluating Exclusion-from-Core Measures of Inflation using Real-Time Data

Author

Listed:
  • Tierney, Heather L.R.

Abstract

Using parametric and nonparametric methods, inflation persistence is examined through the relationship between the exclusions-from-core measure of inflation and total inflation for two sample periods and five in-sample forecast horizons ranging from one to twelve quarters over fifty vintages of real-time data in two measures of inflation: personal consumption expenditure and the consumer price index. This paper finds that core inflation is only able to capture the overall trend of total inflation for the twelve-quarter in-sample forecast horizon using the consumer price index in both the parametric and nonparametric models in the longer sample period. The nonparametric model outperforms the parametric model for both data samples and for all five in-sample forecast horizons.

Suggested Citation

  • Tierney, Heather L.R., 2009. "Evaluating Exclusion-from-Core Measures of Inflation using Real-Time Data," MPRA Paper 17856, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:17856
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/17856/1/MPRA_paper_17856.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph E. Gagnon, 2008. "Inflation regimes and inflation expectations," Review, Federal Reserve Bank of St. Louis, vol. 90(May), pages 229-243.
    2. Elliott, Graham, 2002. "Comments on 'Forecasting with a real-time data set for macroeconomists'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 533-539, December.
    3. Thérèse Laflèche & Jamie Armour, 2006. "Evaluating Measures of Core Inflation," Bank of Canada Review, Bank of Canada, vol. 2006(Summer), pages 19-29.
    4. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, August.
    5. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    6. Michael Creel, 2008. "Estimation of Dynamic Latent Variable Models Using Simulated Nonparametric Moments," UFAE and IAE Working Papers 725.08, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC), revised 02 Jun 2008.
    7. Kozicki, Sharon, 2002. "Comments on 'Forecasting with a real-time data set for macroeconomists'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 541-557, December.
    8. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    9. Hardle, W. & Tsybakov, A., 1997. "Local polynomial estimators of the volatility function in nonparametric autoregression," Journal of Econometrics, Elsevier, vol. 81(1), pages 223-242, November.
    10. Cogley, Timothy, 2002. "A Simple Adaptive Measure of Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 94-113, February.
    11. Michael Creel & Dennis Kristensen, 2012. "Estimation of dynamic latent variable models using simulated non‐parametric moments," Econometrics Journal, Royal Economic Society, vol. 15(3), pages 490-515, October.
    12. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    13. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    14. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    15. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    16. Dean Croushore, 2019. "Revisions to PCE Inflation Measures: Implications for Monetary Policy," International Journal of Central Banking, International Journal of Central Banking, vol. 15(4), pages 241-265, October.
    17. Granger Clive W.J., 2008. "Non-Linear Models: Where Do We Go Next - Time Varying Parameter Models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-11, September.
    18. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    19. Marron, J S, 1988. "Automatic Smoothing Parameter Selection: A Survey," Empirical Economics, Springer, vol. 13(3/4), pages 187-208.
    20. Chauvet, Marcelle & Tierney, Heather L. R., 2007. "Real Time Changes in Monetary Policy," MPRA Paper 16199, University Library of Munich, Germany, revised Apr 2009.
    21. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355, April.
    22. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    23. Fujiwara, Ippei & Koga, Maiko, 2004. "A Statistical Forecasting Method for Inflation Forecasting: Hitting Every Vector Autoregression and Forecasting under Model Uncertainty," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 22(1), pages 123-142, March.
    24. Robert W. Rich & Charles Steindel, 2005. "A review of core inflation and an evaluation of its measures," Staff Reports 236, Federal Reserve Bank of New York.
    25. P. M. Robinson, 1998. "Inference-Without-Smoothing in the Presence of Nonparametric Autocorrelation," Econometrica, Econometric Society, vol. 66(5), pages 1163-1182, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heather L. R. Tierney, 2012. "Examining the ability of core inflation to capture the overall trend of total inflation," Applied Economics, Taylor & Francis Journals, vol. 44(4), pages 493-514, February.
    2. Tierney, Heather L.R., 2009. "A Local Examination for Persistence in Exclusions-from-Core Measures of Inflation Using Real-Time Data," MPRA Paper 13383, University Library of Munich, Germany, revised 03 Feb 2009.
    3. Tierney, Heather L.R., 2011. "Real-time data revisions and the PCE measure of inflation," Economic Modelling, Elsevier, vol. 28(4), pages 1763-1773, July.
    4. Tierney, Heather L.R., 2011. "Forecasting and tracking real-time data revisions in inflation persistence," MPRA Paper 34439, University Library of Munich, Germany.
    5. Heather L. R. Tierney, 2019. "Forecasting with the Nonparametric Exclusion-from-Core Inflation Persistence Model Using Real-Time Data," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 39-63, February.
    6. Politis, Dimitris N, 2010. "Model-free Model-fitting and Predictive Distributions," University of California at San Diego, Economics Working Paper Series qt67j6s174, Department of Economics, UC San Diego.
    7. Eduardo Fé Rodríguez, 2009. "Adaptive Instrumental Variable Estimation of Heteroskedastic Error Component Models," Economics Discussion Paper Series 0921, Economics, The University of Manchester.
    8. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    9. Livanis, Grigorios T. & Salois, Matthew J. & Moss, Charles B., 2009. "A Nonparametric Kernel Representation of the Agricultural Production Function: Implications for Economic Measures of Technology," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51063, Agricultural Economics Society.
    10. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    11. Chauvet, Marcelle & Tierney, Heather L. R., 2007. "Real Time Changes in Monetary Policy," MPRA Paper 16199, University Library of Munich, Germany, revised Apr 2009.
    12. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355, April.
    13. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    14. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    15. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    16. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    17. Bontemps, Christophe & Racine, Jeffrey S. & Simioni, Michel, 2009. "Nonparametric vs Parametric Binary Choice Models: An Empirical Investigation," TSE Working Papers 09-126, Toulouse School of Economics (TSE).
    18. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    19. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    20. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.

    More about this item

    Keywords

    Inflation Persistence; Real-Time Data; Monetary Policy; Nonparametrics; In-Sample Forecasting;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:17856. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.