IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v32y2013i7p779-813.html
   My bibliography  Save this article

State Space Models and MIDAS Regressions

Author

Listed:
  • Jennie Bai
  • Eric Ghysels
  • Jonathan H. Wright

Abstract

We examine the relationship between Mi(xed) Da(ta) S(ampling) (MIDAS) regressions and the Kalman filter when forecasting with mixed frequency data. In general, state space models involve a system of equations, whereas MIDAS regressions involve a single equation. As a consequence, MIDAS regressions might be less efficient, but could also be less prone to parameter estimation error and/or specification errors. We examine how MIDAS regressions and Kalman filters match up under ideal circumstances, that is in population, and in cases where all the stochastic processes—low and high frequency—are correctly specified. We characterize cases where the MIDAS regression exactly replicates the steady state Kalman filter weights. We compare MIDAS and Kalman filter forecasts in population where the state space model is misspecified. We also compare MIDAS and Kalman filter forecasts in small samples. The paper concludes with an empirical application. Overall we find that the MIDAS and Kalman filter methods give similar forecasts. In most cases, the Kalman filter is a bit more accurate, but it is also computationally much more demanding.

Suggested Citation

  • Jennie Bai & Eric Ghysels & Jonathan H. Wright, 2013. "State Space Models and MIDAS Regressions," Econometric Reviews, Taylor & Francis Journals, vol. 32(7), pages 779-813, October.
  • Handle: RePEc:taf:emetrv:v:32:y:2013:i:7:p:779-813
    DOI: 10.1080/07474938.2012.690675
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2012.690675
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2012.690675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
    2. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    2. Krist'of N'emeth & D'aniel Hadh'azi, 2024. "Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout," Papers 2405.15579, arXiv.org.
    3. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    4. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    5. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    6. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    7. Yasutomo Murasawa & Roberto S. Mariano, 2004. "Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model," Econometric Society 2004 Far Eastern Meetings 710, Econometric Society.
    8. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    9. André Lucas & Siem Jan Koopman, 2005. "Business and default cycles for credit risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.
    10. Jésus Fernández-Villaverde & Tomohide Mineyama & Dongho Song & Jesús Fernández-Villaverde, 2024. "Are We Fragmented Yet? Measuring Geopolitical Fragmentation and Its Causal Effects," CESifo Working Paper Series 11192, CESifo.
    11. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    12. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    13. Francis X. Diebold, 2020. "Real-Time Real Economic Activity:Exiting the Great Recession and Entering the Pandemic Recession," PIER Working Paper Archive 20-023, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    14. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    15. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    16. Máximo Camacho & Matías Pacce & Gabriel Pérez-Quirós, 2020. "Spillover effects in international business cycles," Working Papers 2034, Banco de España.
    17. Joao Valle e Azevedo & Siem Jan Koopman & Antonio Rua, 2003. "Tracking Growth and the Business Cycle: a Stochastic Common Cycle Model for the Euro Area," Tinbergen Institute Discussion Papers 03-069/4, Tinbergen Institute.
    18. Nikolaos Zirogiannis & Yorghos Tripodis, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Papers 2013-1, University of Massachusetts Amherst, Department of Resource Economics.
    19. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    20. Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:32:y:2013:i:7:p:779-813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.