IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v31y2016i7p1254-1275.html
   My bibliography  Save this article

Forecasting Consumption: the Role of Consumer Confidence in Real Time with many Predictors

Author

Listed:
  • Kajal Lahiri
  • George Monokroussos
  • Yongchen Zhao

Abstract

We study the role of consumer confidence in forecasting real personal consumption expenditure, and contribute to the extant literature in three substantive ways: First, we reexamine existing empirical models of consumption and consumer confidence not only at the quarterly frequency, but using monthly data as well. Second, we employ real-time data in addition to commonly used revised vintages. Third, we investigate the role of consumer confidence in a rich information context. We produce forecasts of consumption expenditures with and without consumer confidence measures using a dynamic factor model and a large, real-time, jagged-edge data set. In a robust way, we establish the important role of confidence surveys in improving the accuracy of consumption forecasts, manifesting primarily through the services component. During the recession of 2007-09, sentiment is found to have a more pervasive effect on all components of aggregate consumption - durables, non-durables and services.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kajal Lahiri & George Monokroussos & Yongchen Zhao, 2016. "Forecasting Consumption: the Role of Consumer Confidence in Real Time with many Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1254-1275, November.
  • Handle: RePEc:wly:japmet:v:31:y:2016:i:7:p:1254-1275
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    3. Carroll, Christopher D & Fuhrer, Jeffrey C & Wilcox, David W, 1994. "Does Consumer Sentiment Forecast Household Spending? If So, Why?," American Economic Review, American Economic Association, vol. 84(5), pages 1397-1408, December.
    4. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    5. Lahiri, Kajal & Monokroussos, George, 2013. "Nowcasting US GDP: The role of ISM business surveys," International Journal of Forecasting, Elsevier, vol. 29(4), pages 644-658.
    6. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Jason Bram & Sydney Ludvigson, 1998. "Does consumer confidence forecast household expenditure? a sentiment index horse race," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Jun), pages 59-78.
    9. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    10. Kajal Lahiri & Yongchen Zhao, 2013. "Determinants of Consumer Sentiment: Evidence from Household Survey Data," Discussion Papers 13-12, University at Albany, SUNY, Department of Economics.
    11. E. Philip Howrey, 2001. "The Predictive Power of the Index of Consumer Sentiment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 175-216.
    12. Robert B. Barsky & Eric R. Sims, 2012. "Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence," American Economic Review, American Economic Association, vol. 102(4), pages 1343-1377, June.
    13. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    14. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    15. Sydney C. Ludvigson, 2004. "Consumer Confidence and Consumer Spending," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 29-50, Spring.
    16. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    17. Souleles, Nicholas S, 2004. "Expectations, Heterogeneous Forecast Errors, and Consumption: Micro Evidence from the Michigan Consumer Sentiment Surveys," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(1), pages 39-72, February.
    18. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    19. Leslie McGranahan & Maude Toussaint-Comeau, 2006. "Variations in consumer sentiment across demographic groups," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 30(Q I), pages 19-38.
    20. Richard Curtin, 2007. "Consumer Sentiment Surveys: Worldwide Review and Assessment," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2007(1), pages 7-42.
    21. Croushore, Dean, 2005. "Do consumer-confidence indexes help forecast consumer spending in real time?," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 435-450, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aneta Maria Kłopocka, 2017. "Does Consumer Confidence Forecast Household Saving and Borrowing Behavior? Evidence for Poland," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(2), pages 693-717, September.
    2. Hashmat Khan & Santosh Upadhayaya, 2020. "Does business confidence matter for investment?," Empirical Economics, Springer, vol. 59(4), pages 1633-1665, October.
    3. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    4. Juhro, Solikin M. & Iyke, Bernard Njindan, 2020. "Consumer confidence and consumption expenditure in Indonesia," Economic Modelling, Elsevier, vol. 89(C), pages 367-377.
    5. Dimitra Kontana & Fotios Siokis, 2019. "Revisiting the Relationship between Financial Wealth, Housing Wealth, and Consumption: A Panel Analysis for the U.S," Discussion Paper Series 2019_03, Department of Economics, University of Macedonia, revised May 2019.
    6. Gabe Jacob de Bondt & Arne Gieseck & Zivile Zekaite, 2020. "Thick modelling income and wealth effects: a forecast application to euro area private consumption," Empirical Economics, Springer, vol. 58(1), pages 257-286, January.
    7. van Giesen, Roxanne I. & Pieters, Rik, 2019. "Climbing out of an economic crisis: A cycle of consumer sentiment and personal stress," Journal of Economic Psychology, Elsevier, vol. 70(C), pages 109-124.
    8. Tony Chernis & Rodrigo Sekkel, 2017. "A dynamic factor model for nowcasting Canadian GDP growth," Empirical Economics, Springer, vol. 53(1), pages 217-234, August.
    9. Gustavo Adolfo HERNANDEZ DIAZ & Margarita MARÍN JARAMILLO, 2016. "Pronóstico del Consumo Privado: Usando datos de alta frecuencia para el pronóstico de variables de baja frecuencia," Archivos de Economía 014828, Departamento Nacional de Planeación.
    10. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    11. Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.
    12. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    13. Hashmat Khan & Jean-François Rouillard & Santosh Upadhayaya, 2020. "Consumer Confidence and Household Investment," Cahiers de recherche 20-15, Departement d'Economique de l'École de gestion à l'Université de Sherbrooke.
    14. Kevin Moran & Simplice Aimé Nono & Imad Rherrad, 2018. "Forecasting with Many Predictors: How Useful are National and International Confidence Data?," Cahiers de recherche 1814, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    15. de Bondt, Gabe & Gieseck, Arne & Zekaite, Zivile & Herrero, Pablo, 2019. "Disaggregate income and wealth effects in the largest euro area countries," Working Paper Series 2343, European Central Bank.
    16. Lorenzo Bencivelli & Massimiliano Marcellino & Gianluca Moretti, 2017. "Forecasting economic activity by Bayesian bridge model averaging," Empirical Economics, Springer, vol. 53(1), pages 21-40, August.
    17. Christian Gayer & Alessandro Girardi & Andreas Reuter, 2016. "Replacing Judgment by Statistics: Constructing Consumer Confidence Indicators on the basis of Data-driven Techniques. The Case of the Euro Area," Working Papers LuissLab 16125, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    18. Kajal Lahiri & Yongchen Zhao, 2016. "Determinants of Consumer Sentiment Over Business Cycles: Evidence from the US Surveys of Consumers," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 187-215, December.
    19. Chernis, Tony & Cheung, Calista & Velasco, Gabriella, 2020. "A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth," International Journal of Forecasting, Elsevier, vol. 36(3), pages 851-872.
    20. Acuña, Guillermo, 2017. "Evaluación de la capacidad predictiva del índice de percepción del consumidor [Assessing the predictive power of the consumer perception index]," MPRA Paper 83154, University Library of Munich, Germany.
    21. Marina Matosec & Zdenka Obuljen Zoricic, 2019. "Identifying the Interdependence between Consumer Confidence and Macroeconomic Developments in Croatia," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 17(2-B), pages 345-354.
    22. Willem Vanlaer & Samantha Bielen & Wim Marneffe, 2020. "Consumer Confidence and Household Saving Behaviors: A Cross-Country Empirical Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 677-721, January.
    23. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    24. Hamid Baghestani, 2017. "Do US consumer survey data help beat the random walk in forecasting mortgage rates?," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1343017-134, January.
    25. Hashmat Khan & Jean-François Rouillard & Santosh Upadhayaya, 2019. "Consumer Confidence and Household Investment," Carleton Economic Papers 19-06, Carleton University, Department of Economics, revised 28 Oct 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    2. Croushore, Dean, 2005. "Do consumer-confidence indexes help forecast consumer spending in real time?," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 435-450, December.
    3. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    4. Kajal Lahiri & George Monokroussos & Yongchen Zhao, 2012. "Forecasting Consumption in Real Time: The Role of Consumer Confidence Surveys," Discussion Papers 12-02, University at Albany, SUNY, Department of Economics.
    5. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    6. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 683-687.
    7. Kajal Lahiri & Yongchen Zhao, 2016. "Determinants of Consumer Sentiment Over Business Cycles: Evidence from the US Surveys of Consumers," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 187-215, December.
    8. Garciga, Christian & Knotek II, Edward S., 2019. "Forecasting GDP growth with NIPA aggregates: In search of core GDP," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1814-1828.
    9. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    10. Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data)," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    11. Camila Figueroa S. & Michael Pedersen, 2019. "Extracting information on economic activity from business and consumer surveys in an emerging economy (Chile)," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 22(3), pages 098-131, December.
    12. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    13. repec:zbw:rwirep:0208 is not listed on IDEAS
    14. Chernis, Tony & Cheung, Calista & Velasco, Gabriella, 2020. "A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth," International Journal of Forecasting, Elsevier, vol. 36(3), pages 851-872.
    15. Dudek, Sławomir, 2008. "Consumer Survey Data and short-term forecasting of households consumption expenditures in Poland," MPRA Paper 19818, University Library of Munich, Germany.
    16. Torsten Schmidt & Simeon Vosen, 2010. "A monthly consumption indicator for Germany based on internet search query data," Ruhr Economic Papers 0208, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    17. Scott Brave & Charles Gascon & William Kluender & Thomas Walstrum, 2019. "Predicting Benchmarked US State Employment Data in Realtime," Working Paper Series WP 2019-11, Federal Reserve Bank of Chicago.
    18. Hatice Gökçe Karasoy Can & Çağlar Yüncüler, 2018. "The Explanatory Power and the Forecast Performance of Consumer Confidence Indices for Private Consumption Growth in Turkey," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(9), pages 2136-2152, July.
    19. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    20. Erik Kole & Liesbeth Noordegraaf-Eelens & Bas Vringer, 2019. "Cognitive Biases and Consumer Sentiment," Tinbergen Institute Discussion Papers 19-031/I, Tinbergen Institute.
    21. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:31:y:2016:i:7:p:1254-1275. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.