Bagging Time Series Models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Lutz Kilian & Atsushi Inoue, 2004. "Bagging Time Series Models," Econometric Society 2004 North American Summer Meetings 110, Econometric Society.
References listed on IDEAS
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005.
"The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
- Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2005. "The generalised dynamic factor model: one sided estimation and forecasting," ULB Institutional Repository 2013/10129, ULB -- Universite Libre de Bruxelles.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Forni M. & Hallin M., 2003. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Computing in Economics and Finance 2003 143, Society for Computational Economics.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003.
"Do financial variables help forecasting inflation and real activity in the euro area?,"
Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
- Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
- Marc Hallin & Mario Forni & Marco Lippi & Lucrezia Reichlin, 2003. "Do financial variables help forecasting inflation and real activity in the Euro area ?," ULB Institutional Repository 2013/2123, ULB -- Universite Libre de Bruxelles.
- Boivin, Jean & Ng, Serena, 2006.
"Are more data always better for factor analysis?,"
Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
- Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
- Stock, James H. & Watson, Mark W., 1999.
"Forecasting inflation,"
Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
- James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
- Donald W. K. Andrews, 2002.
"Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators,"
Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
- Donald W.K. Andrews, 1999. "Higher-Order Improvements of a Computationally Attractive-Step Bootstrap for Extremum Estimators," Cowles Foundation Discussion Papers 1230, Cowles Foundation for Research in Economics, Yale University.
- Donald W.K. Andrews, 1999. "Higher-Order Improvements of a Computationally Attractive-Step Bootstrap for Extremum Estimators," Cowles Foundation Discussion Papers 1230R, Cowles Foundation for Research in Economics, Yale University, revised Jan 2001.
- Bernanke, Ben S. & Boivin, Jean, 2003.
"Monetary policy in a data-rich environment,"
Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
- Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
- Goncalves, Silvia & Kilian, Lutz, 2004.
"Bootstrapping autoregressions with conditional heteroskedasticity of unknown form,"
Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
- Gonçalves, Sílvia & Kilian, Lutz, 2002. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Working Paper Series 196, European Central Bank.
- Kilian, Lutz & Gonçalves, Sílvia, 2002. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," Discussion Paper Series 1: Economic Studies 2002,26, Deutsche Bundesbank.
- GONÇALVES, Silvia & KILIAN, Lutz, 2003. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," Cahiers de recherche 2003-01, Universite de Montreal, Departement de sciences economiques.
- Gonçalves, Sílvia & KILIAN, Lutz, 2003. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," Cahiers de recherche 01-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Silvia Gonçalves & Lutz Kilian, 2003. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," CIRANO Working Papers 2003s-17, CIRANO.
- West, Kenneth D., 1997.
"Another heteroskedasticity- and autocorrelation-consistent covariance matrix estimator,"
Journal of Econometrics, Elsevier, vol. 76(1-2), pages 171-191.
- Kenneth D. West, 1995. "Another Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," NBER Technical Working Papers 0183, National Bureau of Economic Research, Inc.
- Thomson, Michael & Schmidt, Peter, 1982. "A Note on the Comparison of the Mean Square Error of Inequality Constrained Least Squares and Other Related Estimators," The Review of Economics and Statistics, MIT Press, vol. 64(1), pages 174-176, February.
- Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003.
"Macroeconomic forecasting in the Euro area: Country specific versus area-wide information,"
European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
- Massimiliano Marcellino & James H. Stock & Mark W. Watson, "undated". "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- James H. Stock & Mark W.Watson, 2003.
"Forecasting Output and Inflation: The Role of Asset Prices,"
Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
- James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
- James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
- Goncalves, Silvia & White, Halbert, 2004.
"Maximum likelihood and the bootstrap for nonlinear dynamic models,"
Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
- Goncalves, Silvia & White, Halbert, 2000. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," University of California at San Diego, Economics Working Paper Series qt1bj657ff, Department of Economics, UC San Diego.
- Silvia Gonçalves & Halbert White, 2002. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," CIRANO Working Papers 2002s-41, CIRANO.
- Goncalves, Silvia & White, Halbert, 2002. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," University of California at San Diego, Economics Working Paper Series qt8hx21540, Department of Economics, UC San Diego.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Inoue, Atsushi & Kilian, Lutz, 2006.
"On the selection of forecasting models,"
Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
- Kilian, Lutz & Inoue, Atsushi, 2003. "On the Selection of Forecasting Models," CEPR Discussion Papers 3809, C.E.P.R. Discussion Papers.
- Inoue, Atsushi & Kilian, Lutz, 2003. "On the selection of forecasting models," Working Paper Series 214, European Central Bank.
- White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
- Inoue, Atsushi & Shintani, Mototsugu, 2006.
"Bootstrapping GMM estimators for time series,"
Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
- Atsushi Inoue & Mototsugu Shintani, 2001. "Bootstrapping GMM Estimators for Time Series," Vanderbilt University Department of Economics Working Papers 0129, Vanderbilt University Department of Economics, revised Aug 2003.
- Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Michael McAleer & Marcelo C. Medeiros, 2009.
"Forecasting Realized Volatility with Linear and Nonlinear Models,"
CARF F-Series
CARF-F-189, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Michael McAleer & Marcelo Cunha Medeiros, 2010. "Forecasting Realized Volatility with Linear and Nonlinear Models," Textos para discussão 568, Department of Economics PUC-Rio (Brazil).
- McAleer, M.J. & Medeiros, M.C., 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," Econometric Institute Research Papers EI 2009-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Michael McAleer & Marcelo C. Medeiros, 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," CIRJE F-Series CIRJE-F-686, CIRJE, Faculty of Economics, University of Tokyo.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2011.
"Forecasting large datasets with Bayesian reduced rank multivariate models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(5), pages 735-761, August.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," Economics Working Papers ECO2009/31, European University Institute.
- Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," CEPR Discussion Papers 7446, C.E.P.R. Discussion Papers.
- Clark, Todd E. & McCracken, Michael W., 2012.
"In-sample tests of predictive ability: A new approach,"
Journal of Econometrics, Elsevier, vol. 170(1), pages 1-14.
- Todd E. Clark & Michael W. McCracken, 2009. "In-sample tests of predictive ability: a new approach," Working Papers 2009-051, Federal Reserve Bank of St. Louis.
- Todd E. Clark & Michael W. McCracken, 2009. "In-sample tests of predictive ability: a new approach," Research Working Paper RWP 09-10, Federal Reserve Bank of Kansas City.
- Eric Hillebrand & Marcelo Cunha Medeiros, 2007. "Forecasting realized volatility models:the benefits of bagging and nonlinear specifications," Textos para discussão 547, Department of Economics PUC-Rio (Brazil).
- Jin, Daxiang & Yu, Jize, 2023. "Predicting cryptocurrency market volatility: Novel evidence from climate policy uncertainty," Finance Research Letters, Elsevier, vol. 58(PC).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Francesco Audrino & Kameliya Filipova, 2009. "Yield Curve Predictability, Regimes, and Macroeconomic Information: A Data-Driven Approach," University of St. Gallen Department of Economics working paper series 2009 2009-10, Department of Economics, University of St. Gallen.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2007. "Forecasting Large Datasets with Reduced Rank Multivariate Models," Working Papers 617, Queen Mary University of London, School of Economics and Finance.
- Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz, 2018. "Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing," International Journal of Forecasting, Elsevier, vol. 34(4), pages 748-761.
- Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013.
"Forecasting the Price of Oil,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507,
Elsevier.
- Kilian, Lutz & Alquist, Ron & Vigfusson, Robert J., 2011. "Forecasting the Price of Oil," CEPR Discussion Papers 8388, C.E.P.R. Discussion Papers.
- Ron Alquist & Lutz Kilian & Robert Vigfusson, 2011. "Forecasting the Price of Oil," Staff Working Papers 11-15, Bank of Canada.
- Ron Alquist & Lutz Kilian & Robert J. Vigfusson, 2011. "Forecasting the price of oil," International Finance Discussion Papers 1022, Board of Governors of the Federal Reserve System (U.S.).
- Francesco Audrino & Marcelo C. Medeiros, 2008. "Smooth Regimes, Macroeconomic Variables, and Bagging for the Short-Term Interest Rate Process," University of St. Gallen Department of Economics working paper series 2008 2008-16, Department of Economics, University of St. Gallen.
- Francisco Dias & Maximiano Pinheiro & António Rua, 2010.
"Forecasting using targeted diffusion indexes,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 341-352.
- António Rua & Francisco Craveiro Dias, 2008. "Forecasting Using Targeted Diffusion Indexes," Working Papers w200807, Banco de Portugal, Economics and Research Department.
- Chao Liang & Yi Zhang & Yaojie Zhang, 2022. "Forecasting the volatility of the German stock market: New evidence," Applied Economics, Taylor & Francis Journals, vol. 54(9), pages 1055-1070, February.
- Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2007.
"Forecasting Large Datasets with Reduced Rank Multivariate Models,"
Working Papers
617, Queen Mary University of London, School of Economics and Finance.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2007. "Forecasting Large Datasets with Reduced Rank Multivariate Models," Working Papers 617, Queen Mary University of London, School of Economics and Finance.
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Liu, Na & Gao, Fumin, 2022. "The world uncertainty index and GDP growth rate," Finance Research Letters, Elsevier, vol. 49(C).
- Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
- Francesco Audrino & Marcelo C. Medeiros, 2011.
"Modeling and forecasting short‐term interest rates: The benefits of smooth regimes, macroeconomic variables, and bagging,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 999-1022, September.
- Francesco Audrino & Marcelo Cunha Medeiros, 2010. "Modeling and Forecasting Short-term Interest Rates: The Benefits of Smooth Regimes, Macroeconomic Variables, and Bagging," Textos para discussão 570, Department of Economics PUC-Rio (Brazil).
- Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
- Feng Ma & Xinjie Lu & Lu Wang & Julien Chevallier, 2021. "Global economic policy uncertainty and gold futures market volatility: Evidence from Markov regime‐switching GARCH‐MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1070-1085, September.
- Luo, Qin & Bu, Jinfeng & Xu, Weiju & Huang, Dengshi, 2023. "Stock market volatility prediction: Evidence from a new bagging model," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 445-456.
- Wang, Jiqian & Huang, Yisu & Ma, Feng & Chevallier, Julien, 2020. "Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence," Energy Economics, Elsevier, vol. 91(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kilian, Lutz & Inoue, Atsushi, 2005. "How Useful is Bagging in Forecasting Economic Time Series? A Case Study of US CPI Inflation," CEPR Discussion Papers 5304, C.E.P.R. Discussion Papers.
- Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011.
"Forecasting the US real house price index: Structural and non-structural models with and without fundamentals,"
Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 200927, University of Pretoria, Department of Economics.
- Rangan Gupta & Alan Kabundi & Stephen M. Miller, 2010. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 1001, University of Nevada, Las Vegas , Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working papers 2009-42, University of Connecticut, Department of Economics.
- Banbura, Marta & Rünstler, Gerhard, 2011.
"A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
- Bańbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346.
- Rünstler, Gerhard & Bańbura, Marta, 2007. "A look into the factor model black box: publication lags and the role of hard and soft data in forecasting GDP," Working Paper Series 751, European Central Bank.
- António Rua & Francisco Craveiro Dias, 2008. "Determining the number of factors in approximate factor models with global and group-specific factors," Working Papers w200809, Banco de Portugal, Economics and Research Department.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010.
"Are disaggregate data useful for factor analysis in forecasting French GDP?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2009. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Working papers 232, Banque de France.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014.
"Dynamic factor models: A review of the literature,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2013. "Dynamic factor models: A review of the literature," Post-Print hal-01385974, HAL.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2013. "Dynamic Factor Models: A review of the Literature ," Working papers 430, Banque de France.
- Christian Schumacher, 2007.
"Forecasting German GDP using alternative factor models based on large datasets,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
- Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank.
- Nii Ayi Armah & Norman Swanson, 2010.
"Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
- Nii Ayi Armah & Norman R. Swanson, 2008. "Seeing inside the black box: Using diffusion index methodology to construct factor proxies in large scale macroeconomic time series environments," Working Papers 08-25, Federal Reserve Bank of Philadelphia.
- Norman R. Swanson & Nii Ayi Armah, 2011. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Largescale Macroeconomic Time Series Environments," Departmental Working Papers 201105, Rutgers University, Department of Economics.
- Knut Aastveit & Tørres Trovik, 2012.
"Nowcasting norwegian GDP: the role of asset prices in a small open economy,"
Empirical Economics, Springer, vol. 42(1), pages 95-119, February.
- Knut Are Aastveit & Tørres G. Trovik, 2008. "Nowcasting Norwegian GDP: The role of asset prices in a small open economy," Working Paper 2007/09, Norges Bank.
- Rua, António, 2017.
"A wavelet-based multivariate multiscale approach for forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
- António Rua, 2016. "A wavelet-based multivariate multiscale approach for forecasting," Working Papers w201612, Banco de Portugal, Economics and Research Department.
- Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
- Hendry, David F. & Hubrich, Kirstin, 2006.
"Forecasting economic aggregates by disaggregates,"
Working Paper Series
589, European Central Bank.
- Hendry, David & Hubrich, Kirstin, 2006. "Forecasting Economic Aggregates by Disaggregates," CEPR Discussion Papers 5485, C.E.P.R. Discussion Papers.
- Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008.
"Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change,"
Working Papers
334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Economics Working Papers ECO2008/17, European University Institute.
- Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," CEPR Discussion Papers 6706, C.E.P.R. Discussion Papers.
- Luciani, Matteo, 2014.
"Forecasting with approximate dynamic factor models: The role of non-pervasive shocks,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
- Matteo Luciani, 2011. "Forecasting with Approximate Dynamic Factor Models: the Role of Non-Pervasive Shocks," Working Papers ECARES ECARES 2011‐022, ULB -- Universite Libre de Bruxelles.
- Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
- Ibarra, Raul, 2012. "Do disaggregated CPI data improve the accuracy of inflation forecasts?," Economic Modelling, Elsevier, vol. 29(4), pages 1305-1313.
- Matteo Luciani, 2015.
"Monetary Policy and the Housing Market: A Structural Factor Analysis,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
- Matteo LUCIANI, "undated". "Monetary Policy and the Housing Market: A Structural Factor Analysis," Working Papers wp2010-7, Department of the Treasury, Ministry of the Economy and of Finance.
- Matteo Luciani, 2012. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Working Papers ECARES ECARES 2012-035, ULB -- Universite Libre de Bruxelles.
- Matteo Luciani, 2013. "Monetary Policy, and the Housing Market: A Structural Factor Analysis," ULB Institutional Repository 2013/153324, ULB -- Universite Libre de Bruxelles.
- Gupta, Rangan & Kabundi, Alain, 2011.
"A large factor model for forecasting macroeconomic variables in South Africa,"
International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
- Alain Kabundi & Rangan Gupta, 2009. "A Large Factor Model for Forecasting Macroeconomic Variables in South Africa," Working Papers 137, Economic Research Southern Africa.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta, 2008. "Large Bayesian VARs," Working Paper Series 966, European Central Bank.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
More about this item
Keywords
Bootstrap aggregation; Forecasting; Model selection; Pre-testing;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2004-06-13 (Econometrics)
- NEP-ETS-2004-06-13 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:4333. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.