IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models

  • Goncalves, Silvia
  • White, Halbert

The bootstrap is an increasingly popular method for performing statistical inference. This paper provides the theoretical foundation for using the bootstrap as a valid tool of inference for quasi-maximum likelihood estimators (QMLE). We provide a unified framework for analyzing bootstrapped extremum estimators of nonlinear dynamic models for heterogeneous dependent stochastic processes. We apply our results to two block bootstrap methods, the moving blocks bootstrap of Künsch (1989) and Liu and Singh (1992) and the stationary bootstrap of Politis and Romano (1994), and prove the first order asymptotic validity of the bootstrap approximation to the true distribution of QML estimators. Further, these block bootstrap methods are shown to provide heteroskedastic and autocorrelation consistent standard errors for the QMLE, thus extending the already large literature on robust inference and covariance matrix estimation. We also consider bootstrap testing. In particular, we prove the first order asymptotic validity of the bootstrap distribution of a suitable bootstrap analog of a Wald test statistic for testing hypotheses.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.escholarship.org/uc/item/1bj657ff.pdf;origin=repeccitec
Download Restriction: no

Paper provided by Department of Economics, UC San Diego in its series University of California at San Diego, Economics Working Paper Series with number qt1bj657ff.

as
in new window

Length:
Date of creation: 01 Dec 2000
Date of revision:
Handle: RePEc:cdl:ucsdec:qt1bj657ff
Contact details of provider: Postal: 9500 Gilman Drive, La Jolla, CA 92093-0508
Phone: (858) 534-3383
Fax: (858) 534-7040
Web page: http://www.escholarship.org/repec/ucsdecon/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  2. repec:cup:etheor:v:12:y:1996:i:1:p:187-97 is not listed on IDEAS
  3. Corradi, Valentina & Swanson, Norman R., 2006. "Bootstrap conditional distribution tests in the presence of dynamic misspecification," Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
  4. Goncalves, S. & White, H., 2001. "The Bootstrap of Mean for Dependent Heterogeneous Arrays," Cahiers de recherche 2001-19, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  5. Gon alves, S lvia & White, Halbert, 2002. "The Bootstrap Of The Mean For Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1367-1384, December.
  6. Shao, Jun, 1992. "Bootstrap variance estimators with truncation," Statistics & Probability Letters, Elsevier, vol. 15(2), pages 95-101, September.
  7. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
  8. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
  9. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(03), pages 458-467, December.
  10. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
  11. Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-08, May.
  12. Politis, D. N. & Romano, Joseph P. & Wolf, Michael, 1997. "Subsampling for heteroskedastic time series," Journal of Econometrics, Elsevier, vol. 81(2), pages 281-317, December.
  13. Valentina Corradi & Norman R. Swanson, 2003. "A Test for Comparing Multiple Misspecified Conditional Distributions," Departmental Working Papers 200314, Rutgers University, Department of Economics.
  14. Hahn, Jinyong, 1996. "A Note on Bootstrapping Generalized Method of Moments Estimators," Econometric Theory, Cambridge University Press, vol. 12(01), pages 187-197, March.
  15. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
  16. Goncalves, Silvia & White, Halbert, 2000. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," University of California at San Diego, Economics Working Paper Series qt1bj657ff, Department of Economics, UC San Diego.
  17. Lahiri, Soumendra Nath, 1996. "On Edgeworth Expansion and Moving Block Bootstrap for StudentizedM-Estimators in Multiple Linear Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 42-59, January.
  18. Davidson, Russell & MacKinnon, James G, 1999. "Bootstrap Testing in Nonlinear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 487-508, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt1bj657ff. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.