IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v1y2003i1p55-95.html
   My bibliography  Save this article

Time Inhomogeneous Multiple Volatility Modeling

Author

Listed:
  • Wolfgang Hardle
  • Helmut Herwartz
  • Vladimir Spokoiny

Abstract

Price variations at speculative markets exhibit positive autocorrelation and cross correlation. Due to large parameter spaces necessary for joint modeling of variances and covariances, multivariate parametric volatility models become easily intractable in practice. We propose an adaptive procedure that identifies periods of second-order homogeneity for each moment in time. To overcome the high dimensionality of the problem we transform the multivariate series into a set of univariate processes. We discuss thoroughly the implementation of the adaptive technique. Theoretical and Monte Carlo results are given. We provide two applications of the new method. For a bivariate exchange rate series we compare the multivariate GARCH approach with our method and find the latter to be more in line with the underlying assumption of independently distributed innovations. Analyzing a 23-dimensional vector of asset returns we underscore the case for adaptive modeling in high-dimensional systems. , .

Suggested Citation

  • Wolfgang Hardle & Helmut Herwartz & Vladimir Spokoiny, 2003. "Time Inhomogeneous Multiple Volatility Modeling," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 55-95.
  • Handle: RePEc:oup:jfinec:v:1:y:2003:i:1:p:55-95
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Bollerslev, Tim & Engle, Robert F, 1993. "Common Persistence in Conditional Variances," Econometrica, Econometric Society, vol. 61(1), pages 167-186, January.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    4. Tim Bollerslev & Jeffrey M. Wooldridge, 1988. "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances," Working papers 505, Massachusetts Institute of Technology (MIT), Department of Economics.
    5. Liptser, R. & Spokoiny, Vladimir G., 1999. "Deviation probability bound for martingales with applications to statistical estimation," SFB 373 Discussion Papers 1999,85, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. H. Herwartz, 1998. "Structural Analysis of Portfolio Risk Using Beta Impulse Response Functions," SFB 373 Discussion Papers 1998,41, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    9. Engle, Robert F & Ito, Takatoshi & Lin, Wen-Ling, 1990. "Meteor Showers or Heat Waves? Heteroskedastic Intra-daily Volatility in the Foreign Exchange Market," Econometrica, Econometric Society, vol. 58(3), pages 525-542, May.
    10. repec:cup:etheor:v:11:y:1995:i:1:p:122-50 is not listed on IDEAS
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cizek, P. & Haerdle, W. & Spokoiny, V., 2007. "Adaptive Pointwise Estimation in Time-Inhomogeneous Time-Series Models," Discussion Paper 2007-35, Tilburg University, Center for Economic Research.
    2. Härdle, Wolfgang Karl & Chen, Ying & Schulz, Rainer, 2004. "Prognose mit nichtparametrischen Verfahren," Papers 2004,07, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    3. Chen, Ying & Härdle, Wolfgang & Spokoiny, Vladimir, 2010. "GHICA -- Risk analysis with GH distributions and independent components," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 255-269, March.
    4. VAN BELLEGEM, Sébastien, 2011. "Locally stationary volatility modelling," CORE Discussion Papers 2011041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Oliver Blaskowitz & Helmut Herwartz & Gonzalo de Cadenas Santiago, 2005. "Modeling the FIBOR/EURIBOR Swap Term Structure: An Empirical Approach," SFB 649 Discussion Papers SFB649DP2005-024, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. C. Stéphan & S. Skander, 2003. "Statistical analysis of financial time series under the assuption of local stationarity," THEMA Working Papers 2003-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    7. Cizek, P., 2010. "Modelling Conditional Heteroscedasticity in Nonstationary Series," Discussion Paper 2010-84, Tilburg University, Center for Economic Research.
    8. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    9. Golosnoy, Vasyl & Okhrin, Yarema, 2009. "Flexible shrinkage in portfolio selection," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 317-328, February.
    10. Golosnoy, Vasyl & Ragulin, Sergiy & Schmid, Wolfgang, 2011. "CUSUM control charts for monitoring optimal portfolio weights," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2991-3009, November.
    11. Oliver Blaskowitz & Helmut Herwartz, 2009. "Adaptive forecasting of the EURIBOR swap term structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 575-594.
    12. Enzo Giacomini & Wolfgang Härdle, 2005. "Value-at-Risk Calculations with Time Varying Copulae," SFB 649 Discussion Papers SFB649DP2005-004, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    13. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.
    14. Jianqing Fan & Yingying Fan & Jinchi Lv, 0. "Aggregation of Nonparametric Estimators for Volatility Matrix," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(3), pages 321-357.
    15. Chaohua Dong & Jiti Gao, 2011. "Expansion of Brownian Motion Functionals and Its Application in Econometric Estimation," Monash Econometrics and Business Statistics Working Papers 19/11, Monash University, Department of Econometrics and Business Statistics.
    16. Błażej Mazur & Mateusz Pipień, 2012. "On the Empirical Importance of Periodicity in the Volatility of Financial Returns - Time Varying GARCH as a Second Order APC(2) Process," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 4(2), pages 95-116, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:1:y:2003:i:1:p:55-95. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sofieea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.