IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

On the usefulness of cross-validation for directional forecast evaluation

  • Bergmeir, Christoph
  • Costantini, Mauro
  • Benítez, José M.

The usefulness of a predictor evaluation framework which combines a blocked cross-validation scheme with directional accuracy measures is investigated. The advantage of using a blocked cross-validation scheme with respect to the standard out-of-sample procedure is that cross-validation yields more precise error estimates of the prediction error since it makes full use of the data. In order to quantify the gain in precision when directional accuracy measures are considered, a Monte Carlo analysis using univariate and multivariate models is provided. The experiments indicate that more precise estimates are obtained with the blocked cross-validation procedure. An application is carried out on forecasting UK interest rate for illustration purposes. The results show that in such a situation with small samples the cross-validation scheme may have considerable advantages over the standard out-of-sample evaluation procedure as it may help to overcome problems induced by the limited information the directional accuracy measures contain due to their binary nature.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000310
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 76 (2014)
Issue (Month): C ()
Pages: 132-143

as
in new window

Handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:132-143
Contact details of provider: Web page: http://www.elsevier.com/locate/csda

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
  2. Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
  3. Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
  4. Graham Elliott & Thomas J. Rothenberg & James H. Stock, 1992. "Efficient Tests for an Autoregressive Unit Root," NBER Technical Working Papers 0130, National Bureau of Economic Research, Inc.
  5. Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2012. "Forecasting UK GDP growth, inflation and interest rates under structural change: a comparison of models with time-varying parameters," Bank of England working papers 450, Bank of England.
  6. Nazaria Solferino & Robert J. Waldmann, 2008. "Predicting the Signs of Forecast Errors," CEIS Research Paper 135, Tor Vergata University, CEIS, revised 24 Nov 2008.
  7. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2010. "Fast robust estimation of prediction error based on resampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3121-3130, December.
  8. Costantini, Mauro & Kunst, Robert M., 2009. "Combining Forecasts Based on Multiple Encompassing Tests in a Macroeconomic Core System," Economics Series 243, Institute for Advanced Studies.
  9. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
  10. Georgi N. Boshnakov & Bisher M. Iqelan, 2009. "Generation Of Time Series Models With Given Spectral Properties," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 349-368, 05.
  11. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
  12. Tae-Hwan Kim & Paul Mizen & Alan Thanaset, . "Forecasting Changes in UK Interest Rates," Discussion Papers 07/04, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
  13. Emma Garcia & Simón Sosvilla-rivero, 2005. "Forecasting the dollar|euro exchange rate: are international parities useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(5), pages 369-377.
  14. Borra, Simone & Di Ciaccio, Agostino, 2010. "Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2976-2989, December.
  15. Oliver Blaskowitz & Helmut Herwartz, 2009. "Adaptive forecasting of the EURIBOR swap term structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 575-594.
  16. Milas, Costas & Naraidoo, Ruthira, 2012. "Financial conditions and nonlinearities in the European Central Bank (ECB) reaction function: In-sample and out-of-sample assessment," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 173-189, January.
  17. Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
  18. M. Ruth & K. Donaghy & P. Kirshen, 2006. "Introduction," Chapters, in: Regional Climate Change and Variability, chapter 1 Edward Elgar.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:132-143. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.