IDEAS home Printed from https://ideas.repec.org/p/fgv/eesptd/498.html
   My bibliography  Save this paper

Cross-validation based forecasting method: a machine learning approach

Author

Listed:
  • Pinto, Jeronymo Marcondes
  • Marçal, Emerson Fernandes

Abstract

Our paper aims to evaluate two novel methods on selecting the best forecasting model or its combination based on a Machine Learning approach. The methods are based on the selection of the ”best” model, or combination of models, by crossvalidation technique, from a set of possible models. The first one is based on the seminal paper of Granger-Bates (1969) but weights are estimated by a process of cross-validation applied on the training set. The second one selects the model with the best forecasting performance in the process described above, which we called CvML (Cross-Validation Machine Learning Method). The following models are used: exponential smoothing, SARIMA, artificial neural networks and Threshold autoregression (TAR). Model specification is chosen by R packages: forecast and TSA. Both methods – CvML and MGB - are applied to these models to generate forecasts from one up to twelve periods ahead. Frequency of data is monthly. We run the forecasts exercise to the following to monthly series of Industrial Product Indices for seven countries: Canada, Brazil, Belgium, Germany, Portugal, UK and USA. The data was collected at OECD data, with 504 observations. We choose Average Forecast Combination, Granger Bates Method, MCS model, Naive and Seasonal Naive Model as benchmarks.Our results suggest that MGB did not performed well. However, CvML had a lower mean absolute error for most of countries and forecast horizons, particularly at longer horizons, surpassing all the proposed benchmarks. Similar results hold for absolute mean forecast error.

Suggested Citation

  • Pinto, Jeronymo Marcondes & Marçal, Emerson Fernandes, 2019. "Cross-validation based forecasting method: a machine learning approach," Textos para discussão 498, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
  • Handle: RePEc:fgv:eesptd:498
    as

    Download full text from publisher

    File URL: http://bibliotecadigital.fgv.br/dspace/bitstream/10438/26060/1/TD%20498%20-%20CEMAP_13_CEQEF_49.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2015. "Robust approaches to forecasting," International Journal of Forecasting, Elsevier, vol. 31(1), pages 99-112.
    3. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    4. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    5. Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Christoph Bergmeir & Rob J Hyndman & Bonsoo Koo, 2015. "A Note on the Validity of Cross-Validation for Evaluating Time Series Prediction," Monash Econometrics and Business Statistics Working Papers 10/15, Monash University, Department of Econometrics and Business Statistics.
    8. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    9. Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
    10. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    11. Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
    12. Alzahrani, Naif & Neal, Peter & Spencer, Simon E.F. & McKinley, Trevelyan J. & Touloupou, Panayiota, 2018. "Model selection for time series of count data," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 33-44.
    13. Gerhard Bry & Charlotte Boschan, 1971. "Programmed Selection of Cyclical Turning Points," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages 7-63, National Bureau of Economic Research, Inc.
    14. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fgv:eesptd:498. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Núcleo de Computação da FGV EPGE). General contact details of provider: http://edirc.repec.org/data/eegvfbr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.