IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v30y2011i6p579-596.html
   My bibliography  Save this article

Combining forecasts based on multiple encompassing tests in a macroeconomic core system

Author

Listed:
  • Mauro Costantini
  • Robert M. Kunst

Abstract

This paper investigates whether and to what extent multiple encompassing tests may help determine weights for forecast averaging in a standard vector autoregressive setting. To this end we consider a new test-based procedure, which assigns non‐zero weights to candidate models that add information not covered by other models. The potential benefits of this procedure are explored in extensive Monte Carlo simulations using realistic designs that are adapted to UK and to French macroeconomic data, to which trivariate vector autoregressions (VAR) are fitted. Thus simulations rely on potential data‐generating mechanisms for macroeconomic data rather than on simple but artificial designs. We run two types of forecast ‘competitions’. In the first one, one of the model classes is the trivariate VAR, such that it contains the generating mechanism. In the second specification, none of the competing models contains the true structure. The simulation results show that the performance of test‐based averaging is comparable to uniform weighting of individual models. In one of our role model economies, test‐based averaging achieves advantages in small samples. In larger samples, pure prediction models outperform forecast averages. Copyright (C) 2010 John Wiley & Sons, Ltd.

Suggested Citation

  • Mauro Costantini & Robert M. Kunst, 2011. "Combining forecasts based on multiple encompassing tests in a macroeconomic core system," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 579-596, September.
  • Handle: RePEc:jof:jforec:v:30:y:2011:i:6:p:579-596
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1190
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    2. Pablo Pincheira, 2012. "Are Forecast Combinations Efficient?," Working Papers Central Bank of Chile 661, Central Bank of Chile.
    3. Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2012. "Forecast Combination Based on Multiple Encompassing Tests in a Macroeconomic DSGE-VAR System," Economics Series 292, Institute for Advanced Studies.
    4. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    5. Chen, Qiwei & Costantini, Mauro & Deschamps, Bruno, 2016. "How accurate are professional forecasts in Asia? Evidence from ten countries," International Journal of Forecasting, Elsevier, vol. 32(1), pages 154-167.
    6. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Division of Economics, School of Business, University of Leicester.
    7. Jesus Crespo Cuaresma & Ines Fortin & Jaroslava Hlouskova, 2018. "Exchange rate forecasting and the performance of currency portfolios," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 519-540, August.
    8. Costantini, Mauro & Kunst, Robert M., 2021. "On using predictive-ability tests in the selection of time-series prediction models: A Monte Carlo evaluation," International Journal of Forecasting, Elsevier, vol. 37(2), pages 445-460.
    9. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
    10. Costantini, Mauro & Kunst, Robert M., 2011. "On the Usefulness of the Diebold-Mariano Test in the Selection of Prediction Models," Economics Series 276, Institute for Advanced Studies.
    11. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-02, Central Bank of Cyprus.
    12. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    13. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-2, Central Bank of Cyprus.
    14. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    15. Bergmeir, Christoph & Costantini, Mauro & Benítez, José M., 2014. "On the usefulness of cross-validation for directional forecast evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 132-143.
    16. Charemza, Wojciech & Díaz, Carlos & Makarova, Svetlana, 2019. "Quasi ex-ante inflation forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 35(3), pages 994-1007.

    More about this item

    Keywords

    combining forecasts ; encompassing tests ; model selection ; time series ;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:30:y:2011:i:6:p:579-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.