IDEAS home Printed from
   My bibliography  Save this paper

Combining Forecasts Based on Multiple Encompassing Tests in a Macroeconomic Core System


  • Costantini, Mauro

    (Department of Economics, University of Vienna BWZ, Vienna, Austria)

  • Kunst, Robert M.

    (Department of Economics and Finance, Institute for Advanced Studies, Vienna, Austria, and Department of Economics, University of Vienna, Vienna, Austria)


We investigate whether and to what extent multiple encompassing tests may help determine weights for forecast averaging in a standard vector autoregressive setting. To this end we consider a new test-based procedure, which assigns non-zero weights to candidate models that add information not covered by other models. The potential benefits of this procedure are explored in extensive Monte Carlo simulations using realistic designs that are adapted to U.K. and to French macroeconomic data. The real economic growth rates of these two countries serve as the target series to be predicted. Generally, we find that the test-based averaging of forecasts yields a performance that is comparable to a simple uniform weighting of individual models. In one of our role-model economies, test-based averaging achieves some advantages in small samples. In larger samples, pure prediction models outperform forecast averages.

Suggested Citation

  • Costantini, Mauro & Kunst, Robert M., 2009. "Combining Forecasts Based on Multiple Encompassing Tests in a Macroeconomic Core System," Economics Series 243, Institute for Advanced Studies.
  • Handle: RePEc:ihs:ihsesp:243

    Download full text from publisher

    File URL:
    File Function: First version, 2009
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Pablo Pincheira, 2012. "Are Forecast Combinations Efficient?," Working Papers Central Bank of Chile 661, Central Bank of Chile.
    2. Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2012. "Forecast Combination Based on Multiple Encompassing Tests in a Macroeconomic DSGE-VAR System," Economics Series 292, Institute for Advanced Studies.
    3. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    4. Chen, Qiwei & Costantini, Mauro & Deschamps, Bruno, 2016. "How accurate are professional forecasts in Asia? Evidence from ten countries," International Journal of Forecasting, Elsevier, vol. 32(1), pages 154-167.
    5. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Department of Economics, University of Leicester.
    6. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
    7. Costantini, Mauro & Kunst, Robert M., 2011. "On the Usefulness of the Diebold-Mariano Test in the Selection of Prediction Models," Economics Series 276, Institute for Advanced Studies.
    8. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-02, Central Bank of Cyprus.
    9. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    10. Crespo Cuaresma, Jesus & Fortin, Ines & Hlouskova, Jaroslava, 2017. "Exchange rate forecasting and the performance of currency portfolios," Economics Series 326, Institute for Advanced Studies.
    11. Bergmeir, Christoph & Costantini, Mauro & Benítez, José M., 2014. "On the usefulness of cross-validation for directional forecast evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 132-143.

    More about this item


    Combining forecasts; encompassing tests; model selection; time series;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ihs:ihsesp:243. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Doris Szoncsitz). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.