IDEAS home Printed from https://ideas.repec.org/p/boe/boeewp/0450.html
   My bibliography  Save this paper

Forecasting UK GDP growth, inflation and interest rates under structural change: a comparison of models with time-varying parameters

Author

Listed:
  • Alina Barnett

    (Bank of England)

  • Haroon Mumtaz

    (Bank of England)

  • Konstantinos Theodoridis

    (Bank of England)

Abstract

Evidence from a large and growing empirical literature strongly suggests that there have been changes in inflation and output dynamics in the United Kingdom. This is largely based on a class of econometric models that allow for time-variation in coefficients and volatilities of shocks. While these have been used extensively to study evolving dynamics and for structural analysis, there is little evidence on their usefulness in forecasting UK output growth, inflation and the short-term interest rate. This paper attempts to fill this gap by comparing the performance of a wide variety of time-varying parameter models in forecasting output growth, inflation and a short rate. We find that allowing for time-varying parameters can lead to large and statistically significant gains in forecast accuracy.

Suggested Citation

  • Alina Barnett & Haroon Mumtaz & Konstantinos Theodoridis, 2012. "Forecasting UK GDP growth, inflation and interest rates under structural change: a comparison of models with time-varying parameters," Bank of England working papers 450, Bank of England.
  • Handle: RePEc:boe:boeewp:0450
    as

    Download full text from publisher

    File URL: https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2012/forecasting-uk-gdp-growth-inflation-interest-rates-under-structural-change.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Whitney Newey & Kenneth West, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    2. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    3. Jana Eklund & George Kapetanios & Simon Price, 2010. "Forecasting in the presence of recent structural change," Bank of England working papers 406, Bank of England.
    4. Jan J J Groen & Haroon Mumtaz, 2008. "Investigating the structural stability of the Phillips curve relationship," Bank of England working papers 350, Bank of England.
    5. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
    6. Nathan S. Balke, 2000. "Credit and Economic Activity: Credit Regimes and Nonlinear Propagation of Shocks," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 344-349, May.
    7. Engemann, Kristie M. & Owyang, Michael T., 2010. "Whatever Happened To The Business Cycle? A Bayesian Analysis Of Jobless Recoveries," Macroeconomic Dynamics, Cambridge University Press, vol. 14(5), pages 709-726, November.
    8. Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010. "Inflation-Gap Persistence in the US," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
    9. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    10. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    11. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.
    12. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    13. Eickmeier, Sandra & Lemke, Wolfgang & Marcellino, Massimiliano, 2011. "Classical time-varying FAVAR models - estimation, forecasting and structural analysis," Discussion Paper Series 1: Economic Studies 2011,04, Deutsche Bundesbank.
    14. Haroon Mumtaz & Laura Sunder-Plassmann, 2010. "Time-varying dynamics of the real exchange rate. A structural VAR analysis," Bank of England working papers 382, Bank of England.
    15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    16. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    17. Baumeister, Christiane & Benati, Luca, 2010. "Unconventional monetary policy and the great recession - Estimating the impact of a compression in the yield spread at the zero lower bound," Working Paper Series 1258, European Central Bank.
    18. Christiane Baumeister & Philip Liu & Haroon Mumtaz, 2010. "Changes in the transmission of monetary policy: evidence from a time-varying factor-augmented VAR," Bank of England working papers 401, Bank of England.
    19. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    20. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    21. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    22. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bogdan DIMA & Ştefana Maria DIMA & Flavia BARNA, 2019. "Inflation Contagion Effects in the Baltic Countries: A Time-varying Coefficients VAR with Stochastic Volatility Analysis," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 72-87, March.
    2. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
    3. Michael Wickens, 2014. "How Useful are DSGE Macroeconomic Models for Forecasting?," Open Economies Review, Springer, vol. 25(1), pages 171-193, February.
    4. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta, 2017. "International stock return predictability: Is the role of U.S. time-varying?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 121-146, February.
    5. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2015. "Was the recent downturn in US real GDP predictable?," Applied Economics, Taylor & Francis Journals, vol. 47(28), pages 2985-3007, June.
    6. Kelly Burns, 2016. "A Reconsideration of the Meese-Rogoff Puzzle: An Alternative Approach to Model Estimation and Forecast Evaluation," Multinational Finance Journal, Multinational Finance Journal, vol. 20(1), pages 41-83, March.
    7. Rafael Ravnik, 2014. "Short-Term Forecasting of GDP under Structural Changes," Working Papers 40, The Croatian National Bank, Croatia.
    8. Goodness C. Aye & Mehmet Balcilar & John P. Dunne & Rangan Gupta & Rene� van Eyden, 2014. "Military expenditure, economic growth and structural instability: a case study of South Africa," Defence and Peace Economics, Taylor & Francis Journals, vol. 25(6), pages 619-633, December.
    9. Vugar Ahmadov & Shaig Adigozalov & Salman Huseynov & Fuad Mammadov & Vugar Rahimov, 2016. "Forecasting inflation in post-oil boom years: A case for non-linear models?," Working Papers 1601, Central Bank of Azerbaijan Republic.
    10. Vugar Ahmadov & Salman Huseynov & Shaig Adigozalov & Fuad Mammadov & Vugar Rahimov, 2018. "Forecasting inflation in post-oil boom years: A case for regime switches?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(2), pages 369-385, April.
    11. Mehmet Akif, Destek & Muhammad, Shahbaz & Ilyas, Okumus & Shawkat, Hammoudeh & Avik, Sinha, 2020. "The relationship between economic growth and carbon emissions in G-7 countries: evidence from time-varying parameters with a long history," MPRA Paper 100514, University Library of Munich, Germany, revised Apr 2020.
    12. Roula Inglesi-Lotz & Mehmet Balcilar & Rangan Gupta, 2014. "Time-varying causality between research output and economic growth in US," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 203-216, July.
    13. Bergmeir, Christoph & Costantini, Mauro & Benítez, José M., 2014. "On the usefulness of cross-validation for directional forecast evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 132-143.
    14. Sun, Yanpeng & Mirza, Nawazish & Qadeer, Abdul & Hsueh, Hsin-Pei, 2021. "Connectedness between oil and agricultural commodity prices during tranquil and volatile period. Is crude oil a victim indeed?," Resources Policy, Elsevier, vol. 72(C).
    15. Ngomba Bodi, Francis Ghislain & Bikai, Landry, 2017. "Prévisions de l’inflation et de la croissance en zone CEMAC [Inflation and real growth forecasts in CEMAC zone]," MPRA Paper 116433, University Library of Munich, Germany.
    16. Yilanci, Veli & Kilci, Esra N., 2021. "The role of economic policy uncertainty and geopolitical risk in predicting prices of precious metals: Evidence from a time-varying bootstrap causality test," Resources Policy, Elsevier, vol. 72(C).
    17. Barakchian , Seyed Mahdi & Bayat , Saeed & Karami , Hooman, 2013. "Common Factors of CPI Sub-aggregates and Forecast of Inflation," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 8(4), pages 1-17, October.
    18. Kemal Bagzibagli, 2014. "Monetary transmission mechanism and time variation in the Euro area," Empirical Economics, Springer, vol. 47(3), pages 781-823, November.
    19. Lasha Kavtaradze & Manouchehr Mokhtari, 2018. "Factor Models And Time†Varying Parameter Framework For Forecasting Exchange Rates And Inflation: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 302-334, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2014. "Forecasting UK GDP growth and inflation under structural change. A comparison of models with time-varying parameters," International Journal of Forecasting, Elsevier, vol. 30(1), pages 129-143.
    2. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    3. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    4. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    5. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    6. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    7. Didier Nibbering & Richard Paap & Michel van der Wel, 2016. "A Bayesian Infinite Hidden Markov Vector Autoregressive Model," Tinbergen Institute Discussion Papers 16-107/III, Tinbergen Institute, revised 13 Oct 2017.
    8. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    9. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, April.
    10. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    11. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    12. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    13. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    14. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    15. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
    16. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    17. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
    18. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    19. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    20. Ching-Wai Chiu & Haroon Mumtaz & Gabor Pinter, 2016. "VAR Models with Non-Gaussian Shocks," Discussion Papers 1609, Centre for Macroeconomics (CFM).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boe:boeewp:0450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Media Team (email available below). General contact details of provider: https://edirc.repec.org/data/boegvuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.