IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/2011-007.html
   My bibliography  Save this paper

Connectionist-based rules describing the pass-through of individual goods prices into trend inflation in the United States

Author

Listed:
  • Richard G. Anderson
  • Jane M. Binner
  • Vincent A. Schmidt

Abstract

This paper examines the inflation "pass-through" problem in American monetary policy, defined as the relationship between changes in the growth rates of individual goods and the subsequent economy-wide rate of growth of consumer prices. Granger causality tests robust to structural breaks are used to establish initial relationships. Then, feedforward artificial neural network (ANN) is used to approximate the functional relationship between selected component subindexes and the headline CPI. Moving beyond the ANN “black box,” we illustrate how decision rules can be extracted from the network. Our custom decompositional extraction algorithm generates rules in humanreadable and machine-executable form (Matlab code). Our procedure provides an additional route, beyond direct Bayesian estimation, for empirical econometric relationships to be embedded in DSGE models. A topic for further research is embedding decision rules within such models.

Suggested Citation

  • Richard G. Anderson & Jane M. Binner & Vincent A. Schmidt, 2011. "Connectionist-based rules describing the pass-through of individual goods prices into trend inflation in the United States," Working Papers 2011-007, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:2011-007
    as

    Download full text from publisher

    File URL: http://research.stlouisfed.org/wp/2011/2011-007.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Todd E. Clark & Stephen J. Terry, 2010. "Time Variation in the Inflation Passthrough of Energy Prices," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(7), pages 1419-1433, October.
    2. Rossi, Barbara, 2005. "Optimal Tests For Nested Model Selection With Underlying Parameter Instability," Econometric Theory, Cambridge University Press, vol. 21(05), pages 962-990, October.
    3. Lim, G.C. & McNelis, Paul D., 2008. "Computational Macroeconomics for the Open Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262123061, January.
    4. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    5. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    6. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, Oxford University Press, vol. 125(3), pages 1145-1194.
    7. Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
    8. Paul van den Noord & Christophe André, 2007. "Why has Core Inflation Remained so Muted in the Face of the Oil Shock?," OECD Economics Department Working Papers 551, OECD Publishing.
    9. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    10. Khurshid Kiani & Terry Kastens, 2008. "Testing Forecast Accuracy of Foreign Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural Network Architectures," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 383-406, November.
    11. Jose de Gregorio & Oscar Landerretche & Christopher Neilson, 2007. "Another Pass-Through Bites the Dust? Oil Prices and Inflation," ECONOMIA JOURNAL, THE LATIN AMERICAN AND CARIBBEAN ECONOMIC ASSOCIATION - LACEA, vol. 0(Spring 20), pages 155-208, January.
    12. Anderson, Richard G. & Binner, Jane M. & Schmidt, Vincent A., 2012. "Connectionist-based rules describing the pass-through of individual goods prices into trend inflation in the United States," Economics Letters, Elsevier, vol. 117(1), pages 174-177.
    13. Hooker, Mark A, 2002. "Are Oil Shocks Inflationary? Asymmetric and Nonlinear Specifications versus Changes in Regime," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 540-561, May.
    14. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    15. McNelis, Paul D., 2004. "Neural Networks in Finance," Elsevier Monographs, Elsevier, edition 1, number 9780124859678, August.
    16. Chen, Shiu-Sheng, 2009. "Oil price pass-through into inflation," Energy Economics, Elsevier, vol. 31(1), pages 126-133, January.
    17. John Geweke & Gianni Amisano, 2011. "Hierarchical Markov normal mixture models with applications to financial asset returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 1-29, January/F.
    18. Binner, J.M. & Tino, P. & Tepper, J. & Anderson, R. & Jones, B. & Kendall, G., 2010. "Does money matter in inflation forecasting?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4793-4808.
    19. Herrera, Ana Maria & Hamilton, James D., 2001. "Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy," University of California at San Diego, Economics Working Paper Series qt4qp0p0v5, Department of Economics, UC San Diego.
    20. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson, Richard G. & Binner, Jane M. & Schmidt, Vincent A., 2012. "Connectionist-based rules describing the pass-through of individual goods prices into trend inflation in the United States," Economics Letters, Elsevier, vol. 117(1), pages 174-177.

    More about this item

    Keywords

    Inflation (Finance) ; Consumer price indexes;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2011-007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anna Oates). General contact details of provider: http://edirc.repec.org/data/frbslus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.